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Abstract

We present a temporal debugger, capable of examining temporal behaviour of operating systems.
The debugger is based on a simulator modelling an entire workstation at the instruction level. Unlike
traditional debuggers, which need to interfere with program execution, a simulation-based debugger can
operate without disturbing time flow of the simulated system. This allows non-intrusive and reproducible
debugging of general-purpose operating systems, such as Linux.

We demonstrate the utility of the temporal debugger by analysing two time sensitive parts of Linux,
scheduling and interrupt handling. We show how our tool allows a user to identify and isolate temporally
unsatisfactory behaviour, and examine short sequences in detail.
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1 Introduction

Many desktop applications, such as video, audio,
games and control software, need soft real-time guar-
antees. Commodity desktop and server systems,
such as Linux, were not designed for this purpose,
and implementing support for real-time services in
operating systems is hard. The difficulty of the task
is compounded by the lack of adequate tools for real-
time system analysis.

The debugger is one of the primary tools for find-
ing errors in computer programs. The correctness of
real-time programs includes not only logical correct-
ness, but also time elapsed during execution. This
is referred to as temporal correctness. Debuggers of-
ten interfere with program execution in various ways,
and cannot be used to examine time flow. Conven-
tional debuggers are therefore inadequate for valida-
tion of real-time applications and operating systems.
In order to avoid time distortion while debugging,
debuggers based on simulation may be used. For
embedded real-time systems, which are much slower
than workstations, it is possible to construct tempo-
rally accurate simulators using straightforward im-
plementation techniques. These techniques are in-

feasible for simulating desktop systems, as simulation
would be too slow. However, advances in simulation
technology have resulted in simulators providing an
approximate, but reasonably accurate timing model
while executing with a slowdown of roughly 50-200
in relation to native execution [7, 10]. These sim-
ulators, referred to as complete system simulators,
model an entire workstation at the instruction set
level, and runs unmodified operating systems and
workloads. A complete system simulator that is de-
terministic addresses the two major problems in real-
time analysis: lack of reproducibility and time dis-
tortion resulting from intrusion. The characteristics
of complete system simulators make them excellent
candidates for building a temporally correct debug-
ger for real-time operating systems.

In this paper, we present a temporal debugger based
on complete system simulation. We also demonstrate
its functionality by debugging two time critical se-
quences in Linux: scheduler invocation and interrupt
handling.

Section 2 contains the problem definition and moti-
vation for the use of simulation. It also includes a
summary of related work and alternate approaches.
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In Section 3, complete system simulation is briefly
described. Section 4 presents an example of debug-
ging Linux using simulation. Conclusions are pre-
sented in Section 5.

2 Debugging real-time

grams

pro-

A debugger allows a programmer to inspect pro-
gram state. In order for the debugger to be useful,
it must not affect correctness by changing program
behaviour. Also, as debugging is a repetitive task,
the programmer needs to be able to repeat sessions,
and observe identical execution each time. For pro-
grams whose correctness depend only on predictable
input, meeting these requirements is straightforward.
However, a debugger for real-time programs must be
able to capture and replay program time flow with-
out changing it. In this section we describe how a
debugger based on complete system simulation (de-
scribed in Section 3) addresses these problems and
allows debugging of real-time programs.

2.1 Temporal debugging using a sim-
ulator back-end

A complete debugger setup consists of the debugger
program and a target machine running the debugged
program. Figure 1 shows the different parts of a de-
bugger setup. We refer to the debugger program it-
self as front-end and to the target machine/program
tuple as back-end. Examples of such tuples are: Unix
programs running in the virtual machine provided
by the operating system, or an embedded operating
system on a separate target board. In our case the
tuple consists of an operating system running in a
simulated machine.

Command line interface

“ - Debugger
Program

Machi ne/

Front-end

Back-end

FIGURE 1: Debugger structure.

The debugger expects a certain set of primitives
needed to probe and control the target machine.
Such primitives include reading memory, reading
registers, single stepping and setting breakpoints.
Adapting a simulator to the primitives required by
a specific debugger enables symbolic debugging of

the simulator workload. Unlike traditional debug-
ging environments, such a setup does not impact on
execution of the debuggee. Traditional debuggers
need to stop the debugged program in order to probe
its state, thereby affecting time as perceived by the
target program.

In addition to primitives required by a debugger
front-end, the simulator provides services not nor-
mally available in a debugger. Debugger front-ends
may allow transparent access to the back-end inter-
face, thereby exporting services not known to the
debugger.

The service most relevant for real-time analysis is the
ability to present current time with cycle count gran-
ularity. It enables the user to step through a portion
of code, checking for both functional and temporal
€errors.

2.2 Reproducibility

An artificial system has few unpredictable factors.
Thus, a simulated system starting execution in a
known state will always execute along the same path.
This is useful, both for experiments and debugging,
as it is possible to reproduce a state reached in execu-
tion. A user of a temporal debugger may detect that
excessive time has passed at one point in execution,
and restart the simulation to examine recently exe-
cuted routines more carefully. This is similar to the
methodology used for debugging logical correctness
of conventional programs. However, as time is part
of the state the user wishes to verify, it is crucial that
temporal behaviour is preserved between debugging
sessions.

2.3 Probe immunity

In physical systems, measurement of the system gen-
erally affects its behaviour. This is referred to as
the probe effect. Because real-time system analysis
tends to focus on short periods of time, even small
amounts of temporal intrusion affect measurement
quality. This limits both the accuracy and amount
of measurement in such systems.

In a simulated system, the time scale of the system
under study is decoupled from the time scale of the
system running the simulator. When the user stops
execution, simulation is suspended, and simulated
time is frozen. Time distortion due to the probe ef-
fect is thereby eliminated.

2.4 Related work

In many existing real-time operating systems and en-
vironments, only conventional, non-real-time debug-
ging tools are available. These systems may only
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be used for validating and debugging functional, not
temporal, correctness. However, there are vendors
providing support for alternative debugging meth-
ods. Some of these methods are discussed below.

When developing programs for small embedded sys-
tems, it is common to use an emulator (tool for
executing programs in foreign environments) as de-
bugging back-end. Emulators generally focus on the
functional model and do not provide a time model,
which is necessary to avoid intrusion and to repro-
duce sessions. Some processor manufacturers pro-
vide simulators with models of cache and pipeline,
resulting in good execution time modelling. Prior to
recent advances in complete system simulation, such
simulators were not useful for running commodity
operating systems and large applications. The tools
available are either too incomplete to run general-
purpose operating systems or too slow to run desktop
applications [2, 5].

Support for non-interactive debugging of real-time
programs may be provided by logging execution to a
trace, which is sent over a network to a separate sys-
tem. The trace may be generated by dedicated hard-
ware [6, 13, 15] or additional program code [3, 12].
Both approaches are inconvenient, and the amount
of monitoring is limited. Furthermore, it is inflexible,
as the receiving system may not query for additional
data.

The R2D2 debugger [14] is based on monitoring of
software generated traces. It has been extended with
a low priority task in the target system to answer
queries from the debugger in case the system is idle.
This provides some support for interactive debug-
ging. However, sessions cannot be authentically re-
peated, and the target system may be unable to pro-
vide information when it is under stress.

Mueller and Whalley [11] propose debugging of real-
time applications using execution time prediction.
The application is executed in a conventional debug-
ger, supported by a cache simulator. Time elapsed
is predicted by the simulator and reported during
debugging. However, this prediction does not take
operating system effects into account and works best
for small programs.

The work presented here is made possible by ad-
vances in simulation of computer systems, allow-
ing the construction of accurate simulators of com-
plete computer systems [4, 7, 10]. The results pre-
sented in this paper have previously been presented
in [1], which also contains further discussion on re-
lated work and issues important to debugging real-
time programs.

3 Complete system simulation

Many design and research areas benefit from simu-
lation of computer systems. Thus, the level of de-
tail provided by simulators range from models of mi-
croprocessor chip logic to coarse models of an exe-
cution environment including operating system and
libraries. The simulator used in this paper is a com-
plete system simulator. It provides a model of a ma-
chine at the instruction set level, which represents a
well-defined border between hardware and software.
It models all the hardware in a system, and only the
hardware. As the simulation model is functionally
identical to a real system, operating system and ap-
plication software need not be modified. This limits
the sources of errors to those introduced by the hard-
ware model, and by models of simulation input feed.

3.1 Simulation model

The model provided by a simulator can be thought
of as having two components, functional and tem-
poral. The simulator must provide an almost exact
functional model to be able to run unmodified soft-
ware. However, the accuracy of the temporal model
can be compromised without breaking the operat-
ing system and applications. It is therefore possible
to trade accuracy for speed by using approximative
models. The appropriate degree of approximation
depends on the size of workload and the time scale
of its deadlines. Note that temporal accuracy is less
important than reproducibility and absence of probe
effect (discussed in section 2). A reasonably accurate
time model is usually sufficient to obtain a coarse un-
derstanding of the timing behaviour of the system.
When using a simulation based methodology, we as-
sume that we are able to identify and model the ma-
jor sources of delay in a system. For large appli-
cations, this primarily involves delays from devices,
such as disk subsystems, and the memory hierarchy,
including the memory management unit, caches, and
memory buses. If a user wishes to increase accuracy,
the timing model may be changed at need to include
other delays, for example from CPU pipeline stalls
or out-of-order execution. However, this has a signif-
icant impact on simulation performance, and is often
not necessary.

3.2 Simics

The simulator used for this work is Virtutech
Simics [16]. Simics simulates the SPARC V9 instruc-
tion set and models single or multiprocessor systems
corresponding to the sundu architecture from Sun
Microsystems, for example the Enterprise 3500.
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Simics consists of a core interpreter that offers basic
services such as an instruction set interpreter, a gen-
eral event model, and a module for simulating and
profiling memory activity. A programming interface
allows the addition of device models, which may be
connected to the “real world” or models thereof.

Simics supports a simple time model in its default
configuration. This model approximates time by
defining a cycle as either an executed instruction,
a taken trap, or a part of a memory or device stall.
In this mode, Simics thus has a rather simple view
of the timing of a modern system, and assumes a lin-
ear penalty for events such as TLB miss, data cache
miss, and instruction cache miss.

4 Temporal of

Linux

debugging

As a demonstration of debugging real-time aspects of
operating systems, we describe results from an exam-
ple debugging session. In our scenario, a user wishes
to examine scheduling in the Linux kernel. The pur-
pose may be to implement a new scheduling algo-
rithm or to design a resource reservation scheme, or
simply to learn about operating system internals. In
any case, being able to carefully step through time
sensitive sequences is valuable.

4.1 Experimental setup

In the experiment, Simics is used to simulate an Ul-
traSPARC workstation. The simulator reads a file
representing a disk image and boots the operating
system contained therein. The image used contains
an installation of UltraPenguin 1.1, including a Linux
kernel version 2.1.126. We use a very simple timing
model, where each instruction takes one cycle and
memory system latencies are ignored.

Figure 2 shows a screenshot from a debugging ses-
sion, using Simics’ internal debugger module as
front-end. The console in the background shows the
output of UltraSPARC Linux during boot.

In order to examine Linux scheduling properties, a
small synthetic benchmark is executed in the sim-
ulated machine. The benchmark is a CPU bound
application with a real-time requirement. It needs
nearly all of the CPU each period in order to meet
its deadline. Listing 1 shows pseudo-code for the
benchmark.
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FIGURE 2:

Ezxample of Simics debugging
interface.

The benchmark competes with a find and a grep
process searching through all the files in the local
file system. These tasks are supposed to be con-
sidered unimportant. Thus, their process priorities
have been set as low as possible. Despite competing
processes, the real-time benchmark manages to meet
most of its deadlines. However, a few are missed, and
we will examine one of them.

Listing 1: A soft real-time benchmark

install_signal_handler();
while (true) {
deadline_missed =
set_timer();
for (i = 0; i < num_iterations; i++)
dummy_operation() ;
clear_timer();
if (deadline_missed)
printf ("Missed deadline\n");

false;

4.2 CPU scheduling in Linux

Linux, being a general-purpose operating system, is
not designed to meet strict quality of service require-
ments. As a consequence, the CPU scheduler is op-
timised for throughput and responsiveness, rather
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than guaranteed resource sharing. Scheduling de-
cisions are made when a process changes to or from
running state, and during timer interrupts. Schedul-
ing granularity is limited by the distance between
timer interrupts, which is 10 ms on the configuration
under study. As our benchmark is very sensitive to
scheduling variations, we suspect that low timer in-
terrupt resolution is the cause of deadline misses. In
the following section, we debug a period where the
benchmark misses its deadline to verify our suspi-
cion. We also look at another cause of scheduling
jitter in operating systems, namely interrupt service
latency. We will use our example setup to produce
a time stamped call graph of an interrupt handler
invocation.

4.3 Debugging scheduling decisions

Temporal debugging of the benchmark is similar to
traditional debugging. We execute our program,
searching for an error. When an error is found, we
restart the session in order to examine execution be-
fore the error occurred.

A missed deadline has been detected by watching
benchmark output on the simulated console. Once
the failing period is located in time, we wish to get
an overview of time flow during that period. This
is obtained by setting breakpoints on strategic ker-
nel routines. When a breakpoint is triggered, time,
position and currently active process are printed. In
the example shown below, breakpoints are set in the
scheduler, the timer set routine and the timer over-
flow routine. From the output, presented in Table 1,
we can see that find is scheduled during the period.
It executes only briefly, but for long enough to make
the benchmark miss its deadline.

Time since Time since Event Process
boot previous currently
event running
1348040300 set timer benchmark
1360269869 12229569 scheduler benchmark
1360980692 710823 scheduler find
1373709842 12729150 timer overflow routine benchmark
TABLE 1: Scheduling during one period. Time

unit is CPU cycles.

We proceed by inserting more breakpoints to increase
level of detail. The simulator has now been told to
break on traps and some exceptions, such as inter-
rupts and MMU exceptions. We also insert break-
points at the points where interrupt and trap han-
dlers return. Detailed time flow for a fraction of the
period is shown in Table 2. It reveals that a timer
interrupt occurs every 1680000 cycles. Therefore,
the scheduler cannot run more often unless the com-
peting process performs a blocking system call. As
our benchmark is sensitive to even smaller variations

than this, it confirms our guess that timer interrupt
granularity limits scheduling resolution.

Time since Time since Event Process
boot previous currently
event running
1358589276 1679357 timer interrupt benchmark
1358589919 643 return to user space kernel
1360269276 1679357 timer interrupt benchmark
1360269869 593 scheduler kernel
1360284738 14869 return to user space kernel
1360285101 363 trap number 16 find
1360285168 67 system call kernel
1360285444 276 return to user space kernel
Further system calls in find
1360293863 888 trap number 16 find
1360293951 88 system call kernel
1360294823 872 return to user space kernel
1360294979 156 TLB miss find
1360295292 313 return to user space kernel
1360295293 1 TLB miss find
1360295303 10 protection exception find
1360299254 3951 return to user space kernel
Further system calls and 2 more TLB misses in find
1360973991 370 system call find
1360980213 6222 interrupt vector ex- kernel
ception
1360980236 23 SCSI interrupt kernel
1360980685 449 return to kernel kernel
1360980692 7 scheduler kernel
1360981101 409 return to user space kernel
1360981570 469 interrupt vector ex- benchmark
ception
1360981593 23 SCSI interrupt benchmark
1360983380 1787 return to user space kernel
1361949276 965896 timer interrupt benchmark
1361949919 643 return to user space kernel
TABLE 2: Excerpt from time flow.

4.4 Debugging interrupt handling

Even though we found the cause of the problem,
we are not able to satisfy the needs of our bench-
mark without changing timer resolution and schedul-
ing algorithm. Scheduling resolution may be im-
proved by allowing timer interrupts at variable in-
tervals [9]. However, experience with such modifica-
tions to Linux have shown that long interrupt ser-
vice latency becomes a major source of scheduling
jitter [8]. Therefore, we will proceed by inspecting
interrupt service, trying explain variations in inter-
rupt service time.

In the example used above, there is some interrupt
activity during benchmark execution. From Table 2,
we notice that the second SCSI interrupt takes 1787
cycles to service, whereas the previous interrupt was
serviced in only 449 cycles. In order to find the dif-
ference in service time, simulation is restarted and
time breakpoints are set to stop simulation at these
two events. By single stepping through both inter-
rupt handlers, we find that the first interrupt only
processes an acknowledgement. However, the second
interrupt terminates a SCSI transaction, which trig-
gers execution of the kernel I/O subsystem. A time
stamped call graph for the second interrupt is shown
in Table 3. In order to minimise interrupt service
time, this work could be postponed. However, in
Linux, it is performed within the interrupt handler
so that the operating system can schedule the process
which is waiting for this data. Postponing the work
would affect I/O performance and responsiveness of
interactive applications.
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Time Function Call duration Note
0 interrupt dispatch
92 handler_irq
138 esp_intr
317 esp-do_phase_determine
350 esp.do_status
522 esp-done
535 nmu_release_scsi-sgl spill
607 return from mmurelease scsi-sgl 72
611 scsi_old-done
619 update_timeout spill
650 scsidelete timer spill
676 del_timer spill
710 return from del_timer 34
715 return from scsi_delete_timer 65
717 return from update_timeout 98
784 _wake_up
790 return from _wake_up 6
802 ru_intr
817 sd_devname
826 sprintf
843 vsprintf spill
994 return from vsprintf 151
996 return from sprintf 153
998 return from sd-devname 181
1029 scsifree
1083 return from scsifree 54
1091 end_scsi_request
1118 end_buffer_io_sync
1122 mark_buffer_uptodate
1148 return from mark-buffer_uptodate 26
1160 __wake_up
1205 return from __wake_up a5
1207 return from end-buffer_io_sync 89
1221 add-blkdev_randomness
1235 add-timer randomness
1411 __wake_up spill
1438 return from .wake.up 27
1438 return from add-timer_randomness 203
1440 return from add-blkdev_randomness 219
1450 __wake_up
1458 return from ..wake.up 8
1462 __wake_up
1470 return from ..wake.up 8
1472 scsi_release_command
1497 return from scsi_release.command 25
1500 return from end_scsi_request 409
1505 requeue_sd_request
1510 do_sd_request
1524 return from do-sd-request 14
1527 return from requeue.sd_request 22
1529 return from rw.intr 727
1531 return from scsi_old-done 820
1535 return from esp_done 1013 fill
1558 return from esp_do.status 1208 fill
1581 return from esp_do_phase_determine 1264 fill
1618 return from esp_intr 1480 fill
1669 return from handler_irq 1577 fill
1787 return to user space 1787 fill
TABLE 3: Temporal call graph of SCSI interrupt

service. Indentation level indicates call depth.

During interrupt service, function call depth sur-
passes register window capacity, triggering traps to
software handlers. The rightmost column of Table 3
shows whether the function call caused a register
window spill trap or the return caused a register win-
dow fill trap. Register window trap handling only
takes a small part of interrupt service time. However,
the fact that the traps are noticed illustrates an ad-
vantage of using a simulator. As an operating system
is an asynchronously event-driven program, it is dif-
ficult to predict its execution flow. A user proficient
in operating system internals and computer architec-
ture may guess how to probe a real computer system
for appropriate and hopefully accurate information.
However, most users benefit significantly from a de-
tailed view of program flow.

The user can proceed using this methodology, search-
ing for scheduling jitter in the system. When a tem-
poral hazard is found, he may zoom in on a time
window, down to the instruction level if necessary.
As a complete system simulator provides determin-

istic execution, this debugging method is robust and
sessions can be authentically repeated.

5 Conclusions

We have presented a simulation-based debugger, ca-
pable of temporal debugging of operating systems.
The debugger consists of a command line user inter-
face connected to a simulator modelling a complete
computer system. The simulator executes the op-
erating system in a protected environment and pro-
vides an approximate time model. It is deterministic
and can be suspended without disturbing time flow
of the simulated system. These properties makes the
simulator suitable for debugging temporal behaviour
of general-purpose operating systems, such as Linux.
We have demonstrated our tool by analysing schedul-
ing and interrupt handling in Linux. We have shown
how the temporal debugger allows a user to step care-
fully through time sensitive sequences, searching for
temporal errors, and reexamine execution whenever
unsatisfactory behaviour is noticed.
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