20
TIMES-Pro User Guide

19
TIMES-Pro User Guide

TIMES-Pro: A Tool for Modeling, Analysis, Simulation, and Implementation of
Real-Time Systems

Department of Information Technology
Uppsala University

[image:]
2016

Table of Contents

1.	Introduction	3
2.	A Review on DRT and SDRT	4
3.	Installation	5
4.	Designing a Real-Time Task Set	6
5.	Specifying the Architecture	9
6.	Simulation	10
7.	Code Generation	11
Appendix A. Software Architecture	17

1. [bookmark: _Toc466294111]Introduction

TIMES-Pro is a tool for modeling, analysis, simulation, and implementation of real-time tasks. It provides a means to specify real-time task graphs through a graphical user interface (GUI). The tool provides a simulation facility to show the user the possible timing behavior of the tasks when scheduled by a fixed- or dynamic-priority scheduling policy.
Currently, the tool supports one of the most expressive workload models of real-time systems, namely SDRT. In the SDRT model, a real-time task is specified by a graph which can have synchronizations with other task graphs.

2. [bookmark: _Toc466294112]A Review on DRT and SDRT

A review on the DRT and SDRT task models and the respective analyses goes here.
Nomenclature:
	Notation
	Definition

	
	The set of vertices (job types) of a task

	
	The set of edges of a task

	
	The WCET of job type

	
	The relative deadline of job type

	
	The label of an edge , representing the inter-release time between job types and v .

	
	The synchronization action of an edge

a. Syntactical Rules
A given set of digraphs is considered as a valid SDRT task set if the following conditions are satisfied[footnoteRef:2]. [2: 	 Items in blue are checked immediately whenever the user makes a modification. Items in black (as well as the syntax rules specific to analysis) are checked whenever explicitly requested by the user. Items in green are not implemented yet.]

a. , (), and are integers for all and .
b. .
c. .
d. .
e. Task names are unique.
f. The name of a job is unique with respect to the other jobs in the same task.
g. Task priorities should be integer values.
h. Tasks are subject to constrained deadlines, that is, .
i. All the names should follow the Naming Rule (defined below).
j. For each sending action, there exists at least one receiving action in some another task.
k. An action cannot appear in a task more than once.
Naming Rule:
<digit> ::= “0” | “1” | … | “9”
<char> ::= “a” | … | “z” | “A” | … | “Z” | “_”
<string> ::= <char> | <digit> | <char><string> | <digit><string>
<name> := <char> | <char><string>

Rules Specific to Analysis

The following rules are specific to analysis. Meanwhile, for other purposes (like code generation), maybe they do not need to be respected.
·
· For any , there exists at most one edge from to . In other words, does not contain redundant elements.
· .

[bookmark: _GoBack]Rules required for code generation:

3. [bookmark: _Toc466294113]Installation

The system prerequisites and required packages (like JRE) are explained here. In addition, the installation instructions are presented.

4. [bookmark: _Toc466294114]Designing a Real-Time Task Set

Here, we will explain that how the model of a sample DRT task set can be specified in the tool. We will show some snapshots of the corresponding steps.
Some examples are seen below.
[image:]1
2
3
4

1. Create new task set
2. Open an already saved task set (xml format)
3. Random task generation
4. Create new task in the existing task set

[image:]1
2
3
5
4
6

1. New node (job type).
2. New edge.
3. Default pointer.
4. Run schedulability test.
5. The analysis result is printed here.
6. The analysis time, as well as the result is shown here.

[image:]1
2
3

1. Open the configuration panel.
2. Parameters of random task generation
3. Scheduling policy (used for the schedulability analysis)

Random task set generation
Through this feature, the user can specify a range of task parameters. The tool then will generate a random task set in accordance with those parameters.
The user can select the size of the task set, its utilization, or both. If both are selected, the system first generates a task set with the specified number of tasks; then the parameters (minimum inter-release times) are scaled such that the desired utilization is achieved.

5. [bookmark: _Toc466294115]Specifying the Architecture

6. [bookmark: _Toc466294116]Simulation

The respective explanations for the simulation tab go here.
A sample trace of the simulation of 6 tasks with fixed-priority policy is seen in the figure below.
[image:]

7. [bookmark: _Toc466294117]Code Generation

The “Code Generation” feature of TIMES-Pro provides the facility of producing Ada code from a modeled task set. This section provides a set of snapshots from the tool to guide the user to use this facility. Code generation can include the following steps, which are depicted in the subsequent figures:
1. Declaration of context clause, global variable, and local variables;
2. Setting the starting job of each task;
3. Assign a code segment to each job;
4. Assign a logical condition to each branch;
5. Code generation.

1. Declaration of context clause, global variable, and local variable: Using this feature, a user can specify (declare) context clauses (for instance “with clauses” to use a certain Ada library), a set of global (system-wide) variables, as well as task specific (local) variables, as shown in the following three pictures.

[image:]
[image:]

2. Setting the first job of a task: Used to make a vertex as the starting job of the task. The starting job (vertex) is distinguished by a different color.

[image:]

[image:]

3. Assign a code segment to a job: The user can assign a code segment to each jobtype (vertex).
[image:]

[image:]

4. Branch conditions: In a DRT task graph, there may be more than one outgoing edge from a specific vertex. This situation represents a branch in the program. The user needs to provide logical conditions to determine which branch should be taken at run time. The order in which the conditions are checked can also be determined by the user.
[image:]

[image:]

5. Code generation: According to the above mentioned inputs from the user, the tool generates an Ada source file which contains the code for the current task set.

[image:]

The following image shows a part of the Ada code generated by the tool for a simple task set containing two DRT tasks.

[image:]

[bookmark: _Toc466294118]Appendix A. Software Architecture

This section briefly reviews the main components of the software and their communication mechanism.
Java front end

Python back end

SP analysis
EDF analysis
Multicore Partitioning
Task Editor
Simulator
Code generator

XML file
package storage:
class TSLoader;
class TSSaver;
rndtask.py
rf_dbf.py
partition.py
responsetime.py

class Manager;

Ada source files

class AdaSynthesizer;
class Util;

Design Pattern of the Code Synthesis Component:
There is a separate tab for code generation. The classes involved in this tab are arranged in the way presented in the figure below.

In terms of the MVC (Model-View-Controller) design pattern, the package structure can be represented as follows:
[image: C:\Users\Morteza\Desktop\ClassDiagram2.png]
A design rule in this architecture is that any changes related to the domain model (including: code generation, saving, …) should be done through “SynthesisMgr”, and not by the classes in the Controller layer.
Important packages/components:
· Dialogs.java: a class containing all dialog panels to show to the user.
· Package service: this contains classes to run external programs, i.e., python, gnat compiler, etc.

image7.png
|2 TaskSetl - TIMES++ GUI
File Edit Run

L

Task Editor | sif

Help

Context Clauses
Global Veriable
Task Variables

sovatot T2 -1 O @ 30

Pt gt Declaring context clauses
Name WoeT Deadine ||| emm

v [2 | w G
P S -]
sStw 1 e | R

Context Clauses

Context Clauses:

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Real Time; use Ada.Real Time;

Task Name Priority

(1, a6)

Notes:

image8.png
TaskSetl - TIMES++ GUI
File Edit Run Source Help

U@ = ES

Task Editor | Simulator | Abstraction | Analysis|

Select Task: |RandomTaskt v O
Jobs Properties

(2,

Name WCET Deadine ||| e

a2 | e
P 3

1 ——- G
3

TaskName Prioity @,
RandomTask1 i -

[RandomTask2 2

RandomTask3 E]

RandomTasks |4 Set First Job
[RandomTasks 5

RandomTasks |6 Rename
RandomTasks |7 @S
b Branch Conditions
RandomTask10 [10

RandomTaskil (11 Delete
RandomTaski2 [12

RandomTask13 [13

RandomTaski4 [14 add

Notes:

Random Task Set Generated

image9.png
< | TaskSet] - TIMES++ GUI
File Edit Run Source Help

U@ = ES

‘Task Editor | simulator | Abstraction | Analysis|

Select Task: |RandomTaskt v O
Jobs Properties

Name WCET Deadine ||| e

a2 | e
P 3

1 ——-
3

New Task] [New Job

TaskName Priority
RandomTaski |1
RandomTaskz |2
RandomTasta |3
RandomTaskd 14
5
6
7
s

RandomTasks
RandomTask6
RandomTask?
RandomTasks
RandomTasko |9
[RandomTask10 (10
RandomTaskil |11
RandomTask12 (12
RandomTaski3 |13
RandomTaski4 |14

Notes:

Random Task Set Generated

image10.png
|2 TaskSetl - TIMES++ GUI
File Edit Run Source Help

Task Editor | Simulator | Abstraction | Analysis|

Select Task: |RandomTaskt v O
Jobs Properties

(2,

® o WeET Desdine
i ot
i =
FJY] 5| &
i |||

I

Set First Job.
Rename

Code Segment
Branch Conditions

Delete

TaskName Priorty .
RandomTask1
RandomTaska
RandomTasia
RandomTaskd.
RandomTasks
RandomTasks
RandomTasks
RandomTasks
RandomTasko o
RandomTaski0 (10
RandomTaskil [11
RandomTaski2 (12
RandomTaski3 13
RandomTaskis (14

I

Notes:

Randam Mack Satr Coanarstad

image11.png
TaskSetl - TIMES++ GUI

File Edit Run Source Help

== °0

Job Code Segment

0 Code block:

for Count in 1..5 loop

Get (Input_value);

Sum := Sum + Input_Value;
end loop;

[Rardam Tack Satr Conerstod

image12.png
Name

SetFirst Job
Rename

Code Segment
Branch Cond

Delete

image13.png
‘askSet] - TIMES++ GUI
File Edit Run Source Help

Job Code Segment

0 Code for the branch to node v2:

Code for the branch to node vi:

sum 19

Code for the branch to node v3:

sum > 19

[Random Task Set Generated

image14.png
|2 TaskSetl - TIMES++ GUI
File Edit Run Source Help

= N
BT
‘Task Editor | Simulator | Abftractiol Code generation
SokctTasc |T1 -1 O S

Jobs Properties

Name WCET Deadine ||| e==
v [2 | 30 | P

2w 1
31w 1| 4 save Coe s

Save in: | | My Documents x| @

: | Code Generated
o]
Recent | b MATLAB
Trems | oldtimes
L Others

|-

Desktop |} sdrt_paper

r‘ 1. sdrtlio
My L times

Task Name

Documents | (& DRT.adb
T2 TaskSetLadb
LY
Computer
frotes: File name:

Network Fies of type: [+ agh =

image15.png
-- Ada code generated by TIMES++
—- for task set TaskSecl
- 2016/03/18 11:37:52

with Ada.Real Time: use Ada.Real Time:
with Ada.Text_IO: use Ada.Text_IO:

procedure TaskSetl is
- task declaration for T1
task T1: -- a singlecon task
task body T1 is
-~ procedures for the job types of T1:
procedure vi_code is
bpegin
Put_Line ("vi -> Task Ti"):
end v1_code:
procedure v2_code is
bpegin
Put_Line ("v2 first line -> Task T17):

Put_Line ("v2 second line -> Task Ti"):
end v2_code:
procedure v3_code is
bpegin
Put_Line ("v3 -> T17);

end v3_code:

~ Variable Declaration
type State is (vi, v2, v3):
Current_State : State = vl:
Next_Time : Ada.Real Time.Time :— Clock:
v1_to_v2_delay : constant Time Span :- Milliseconds(50):
v2_to_v3 delay : constant Time Span :— Milliseconds(92):
v2_to_v2_delay : constant Time Span :— Milliseconds(92):
v3_to_vi delay : constant Time Span :— Milliseconds(100):

- - Task body
bpegin
loop
case Current_State is
when v1

v1_code:
1f True then
Current_state
Next_Time :— Next_Time + vi_to_v2_delay:
delay until Nexc_Time:
else
exit:
end if:
.

va:

image16.png
Synthesis

View

CadePane

Show Code

Cantraller

SynthesisTab

Command

Toolbar

Wadel

AbsSyninesizer

gAY

AdaSyninesizer

Synthesishigr

Gen. Code

Save Generate Code

Wain

} ity

Wanager

image2.png
Task Name.
Task_1

Name WCET

Deadline

image3.png
|£ TaskSet_1 - TIMES++ GUI
File Edit Run Source Help

1=)=

Task Editor | Simulator | Abstraction | Analysis|

Task Name. Priority O
1
@, 5)

1, 8)

Name WCET Deadline
1l 10 2 s
2 1 1 8
3 2 3 8

Information ==

Task set is feasible.

3, @
C Analysis time = 0.063 sec.
New Job
i 5,48
Fotes:
Running analysis ... -

Task set is feasible.

image4.png
&) TaskSet 1 - TIMES++ GUI
File Edit Run Source Help

‘Task Properties| sch. Policy | Developer Cig.

Task Type
(@ small Tasks

() Medium Tasks

Task Set Parameters-

vees 5|

Fan-out

Deadiine

Running analysis ...
[Task set is feasible.

image5.png
e = ey ==

File Edit Run Source Help

U e L %0

Task Editor| Simulator | Abstraction | Analysis|

Initial Phase: e
‘Simulation Speed:
Scheduling Policy: 123456780910
0 s o 15 2 2 3 3B 4 4 s 55 6 6 70 75 8 8 9 9 100 105 10 15 120 12
RandomTask1

RandomTasl2 e B
P
RandomTasla e

RandomTacks e — e e,

v I
RandomTaslS == - —
2 3 1
RandomTacks 1 —_— hi —— 1 —
« il 5
Workload
100
00

o s 1 15 20 25 3 3 4 45 s s e e 70 75 s 85 9 8 100 105 10 115 120 12
< i J 5

Notes:

Random Task Set Generated
Random Task Set Generated
Random Task Set Generated

image6.png
|2 TaskSetl - TIMES++ GUI
File Edit Run

Ll

Task Editor | sif

Help
Context Clauses’
Global Veriable
Task Variables

[~

seectTask [T1 -O (Agas
Jobs Properties.

Name WCET Deadine ||| e
1w 2 30

P
sl 1 T | R

Task Name Priority

92

Notes:

image1.png

