B-part 20210108

January 21, 2021

1 B.la

[1]: import csv
import sys
import matplotlib.pyplot as plt

def convert_to_float(s):
"""Convert a string to a float, or None if it ts an empty string"""
if s I="'":
return float(s)
else:
return None

def read_csv(filename):

nimnn

Read the csv file containing child mortality data and returns <t as a
dicttionary, as well as the years found in the file

nmnn

with open(filename, 'r') as f:
raw_data = list(csv.reader(f, delimiter=',', quotechar='""'))

years = [int(v) for v in raw_datal[0] [4:]]
data = raw_datal1:]

child_mortality = {
row[2]: [convert_to_float(v) for v in row([4:]]
for row in data

}
return (years, child_mortality)

def get_child_mortality(country, year, child_mortality, years):

nimnn

Return child mortality for a spectific country in a spectific year, both

given as parameters.
nimnn

return child_mortality[country] [years.index(year)]

years, child_mortality = read_csv("child_mortality.csv")
years_plot = [1920, 1945, 1970, 1995, 2020]
fig, ax = plt.subplots(len(years_plot), 1, figsize=(6, 10))

for i, year in enumerate(years_plot):
ax[i] .hist(

L
get_child_mortality(country, year, child_mortality, years)
for country in child_mortality
if get_child_mortality(country, year, child_mortality, years) !
—= None
1,
bins=49, range=(0, 600),
)

ax[i] .set_title(year)
ax[i] .set_x1im(0)

ax[i] .set_xlabel('Child Mortality (%)')
ax[i] .set_ylabel('# Countries')

fig.tight_layout() # Make sure labels don't overlap with the figures

plt.show()

1920

4 157
0
3
i
,I]_
1] 1040 200 300 400 SO0 00
Child Mortality (%)
1945
a
=
=
=
L)
[
e
0 1040 200 3040 400 00 00
Child Mortality (36e)
1970
EH
=
=
=
L]
[N
#
= l I
L] 100 200 300 400 500 cO0
Child Mertality (%)
1995
i 40
=
é 20
e
0 | T T T
1] 1040 200 300 400 00 GO0
Child Mortality (%)
2020
& "
*g 50
L)}
ﬁ 25
'D I I ! I I
1] 1040 200 3301} 400 00 00

Child Mortality (%)

2 B.1b

[2]: | import csv
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D

def convert_to_float(s):
"""Convert a string to a float, or None if 2t ts the empty string"""
if s !="'":
return float(s)
else:

return None

def read_csv(filename, start_col, key_col):

nimnn

Read a csv file, where the data ts identified by keys in column
‘key_col ™ and starts at column “stari_col”. All wvalues in the data
will be parsed as floats.

Parameters
filename: str
start_col: aint
key_col: int

Return

{str: [float]}

nimnn

with open(filename, 'r') as f:
raw_data = list(csv.reader(f, delimiter=',', quotechar='""'))

years = [int(v) for v in raw_datal[0] [start_col:]]
data = raw_datal1:]

return (years, {
row[key_col]: [convert_to_float(v) for v in row[start_col:]]
for row in data

i)

def read

nimnn

nimnn

with

retu

Child
years, c

TFR
_, tfr

Pop
-» POP

_cont(filename) :

Read a csv file containing continent information for all countries.
All strings are converted to lower case.

Parameters

filename: str

Return
 fstrs st
open(filename, 'r') as f:
raw_data = list(csv.reader(f, delimiter=',', quotechar='""'))
rn {row[4].lower(): row[1].lower() for row in raw_data}

Mortality
hmo = read_csv("child_mortality.csv", 4, 2)

read_csv("total_fertility_rate.csv", 4, 2)

read_csv("population.csv", 3, 0)

Continents

continen

#Set nic
colors =

def get_

nimnn

ts = read_cont("country-continent.csv")

e colors for each continent depending on the continent code
{

'as': '#££5872',

'eu': '"#ffe700',

'an': '"#ffffff’',

'af': '#00d5e9',

'oc': '#f£5872',

'na': '#7feb00',

'sa': '#7feb00',

data(data, country, year):

Return the value for a specific country and year contained in the
data dictionary provided as parameter.

Parameters

data: {str: [float]}
country: str
year: int

nimnn

return datalcountry] [years.index(year)]

def common_keys(data_list):

nmnn

Returns a list of common keys contained in the list of dictionaries.

Parameters

data_list: [{str: T}]

Return

nimnn

return [country
for country in data_list[0]
if all([country in data for data in data_list[1:]1])]

countries = sorted(
common_keys([chmo, tfr, pop, continents]),
key=lambda c: poplc], reverse=True)

years_plot = [1990, 2020, 2050]

fig, ax = plt.subplots(l, len(years_plot), sharey=True, figsize=(15, 5))

for i, year in enumerate(years_plot):

x = np.array([get_data(chmo, country, year) for country in countries])
y = np.array([get_data(tfr, country, year) for country in countries])
s = np.array([get_data(pop, country, year) for country in countries])
¢ = [colors[continents[countryl] for country in countries]

s = 10%%3.25%s/s.max()

ax[i] .scatter(x, y, s=s, c=c, edgecolors='k')
ax[i] .set_xscale('log')

ax[i] .set_x1im(0.75, 500)

ax[i] .set_title(year)

ax[i] .set_xlabel('Child Mortality (%)')

legend_elements = [
Line2D([0], [0], marker='o', color='w',
label=continent,

markerfacecolor=color, markeredgecolor='k', markersize=10)

for (continent, color) in [
("Africa', '#00d5e9'),
('Asia, Oceania', '#ff5872'),
('Europe', '#ffe700'),
('Americas', '#7feb00'),
]

ax[0] .1legend (handles=legend_elements, loc=0)
ax[1] .set_xlabel('Child Mortality (%)')
ax[0] .set_ylabel('Babies per woman')

fig.tight_layout ()

plt.savefig("chmotfr. jpg")

plt.show()
1990 2020 2050
@ Hica -
8 @ Asia, Oceania
(& Europe .
S @ Americas . _’: °
O
E 6 o0 "r_ ° ®°
5 s e e 0y
E L® Jeee o,
i, @ oo
: SRR ‘Re -',-
: ofus™ & W“-’
1 T

T T . . .
10° 10 02 10° 100 102
Child Mortality (%) Child Mortality (%)

led Mortality (3]

3 B.2a

[3]: class Grid:

nimnn

Grid of cells

Attridbutes

grid: [[bool]]
z_max: int
y_maz: int

nimnn

def __init__(self, grid):

nnn

Build a grid from a list of lists of booleans.

Parameters

grid: [[booll]

self.grid = [row.copy() for row in grid]
self.x_max = len(grid)
self.y_max = len(grid[0])

def flip_cell(self, coord):

nnn

Invert the state located at “coord’.

Parameters

coord: (int, int)

nimnn

X, y = coord
self.grid[x] [y] = not self.grid[x] [y]

def n_neighbors(self, coord):

nnn

Compute the number of meighbors surrounding the cell located

at “coord”.

Parameters

coord: (int, int)

Return

nmnn

X, y = coord
count = 0

for dx in [-1, O, 1]:
for dy in [-1, 0, 1]:
if 0 <= x + dx < self.x_max and 0 <= y + dy < self.y_max:
Check we don't count the center cell
if self.grid[x + dx][y + dy] and (dx != 0 or dy != 0):
count += 1

return count

#Alt. with list-comprehension:

#return sum([

self.grid[z + dz][y + dyl

for dz in [-1, 0, 1] for dy in [-1, 0, 1]

if ((0 <=z + dz < self.z_maxz and 0 <= y + dy < self.y maz)
and (dz != 0 or dy != 0))])

def step(self):

ninn

Update the grid by one step.
new_grid = [row.copy() for row in self.grid]
for x in range(self.x_max):
for y in range(self.y_max):
Save the #neighbors in a wvariable to avoid computing it twice
n_neighbors = self.n_neighbors((x, y))
if self.grid[x][y]:
new_grid[x] [y]
else:
new_grid[x] [y]

(n_neighbors in [2, 3])

(n_neighbors == 3)
self.grid = new_grid

#Alt. with list-comprehension:

#self.grid = [

[(self.grid[z][y] and self.n_neighbors((z, y)) in [2, 3])
or (not self.grid[z][y] and self.n_neighbors((z, y)) == 3)
for y in range(self.y_mazx)]

for z in range(self.xz _maz)]

def update(self, n, snap_freq):
Update the grid by 'n” steps and prints the grid every “snap_freq’
steps.

Parameters
n: int
snap_freq: int
nimn
for i in range(n):
self.step()
if i 7 snap_freq == 0:
self .print_snapshot ()

def print_snapshot(self):

nunn

Print the current state of the grid, using '.' for dead cells and

'"#' for living cells.

for row in self.grid:
print(''.join(['#' if cell else '.' for cell in row]))
print ()

grid = Grid([[False for y in range(4)] for x in range(3)])

for coord in [(0, 2), (1, 2), (1, 0), (2, 2)]:
grid.flip_cell(coord)

grid.print_snapshot ()
grid.update(4, 1)

L H.

#.#.
LLH#.

L H##

B

CHE.
B
B

HLOH#
#..#

10

HLH#

4 B.2b

One solution would be to use a list containing two lists of integers:

e the list at index 0 would contain the number of neighbors required for a dead cell to become

alive

e the list at index 1 would contain the number of neighbors required for a living cell to stay
alive.

The __init__ function would then take an extra argument, that we could call rules and store
this list in an attribute with the same name. In step, after computing the number of neighbors,
we can check if this value is in the first or the second list, depending of the current state of the cell.

In this way, we can represent any set of rules. For instance the default rules presented in the
problem description would be [[3], [2, 3]]. The rules presented in this question would be [[3,
4, 5], [2, 5, 71].

5 B.2c

1. In the code provided before, we would need to change the following things:

When computing the size of the grid in __init we would need to search for the
coordinates with minimum and maximum index, i.e. we would need two extra attributes

pa—

x_min and y_min

When flipping a cell, we would need to first check that the cell exists in the set. If it
does, we should remove it, if it does not exist, we should add it.

When computing the number of neighbors, instead of using the values from the grid, we
can use the values returned by (x + dx, y + dy) in grid for each potential neighbors
and sum them up as we did before.

In step, instead of looping through every coordinates in the grid, we need to first generate
a list of all the cells and their potential neighbors (i.e. not only do we need to iterate
over the coordinates in the set, but also over the coordinates where cells can potentially
become alive), and then filter this new list according the the neighboring rules. From
this filtered list we can generate a new set, the new updated state of the grid.

Finally, in print_snapshot, we would need to go from y_min to y_max and from x_min
to x_max and print # for all coordinates that are in the set, else ..

2. The code presented in this document was written with this question in mind already, so it
might not be a very fair example. However, some things to think about when writing code
that we want to be general are:

As much as possible, use small, reusable functions and methods and use them as much as
possible, instead of accessing the attributes directly. In this way, if you decide to change
the design of your class and change some attributes, it should be enough to redefine only
a handful of methods.

11

[1:

o Use variables whenever you need to store a value that you will need to use several times.
If you need to change this value later, you only need to change it once.

12

	B.1a
	B.1b
	B.2a
	B.2b
	B.2c

