DATA MINING - 1DL105, 1DL111

Fall 2007

An introductory class in data mining

http://user.it.uu.se/~udbl/dut-ht2007/
alt. http://www.it.uu.se/edu/course/homepage/infoutv/ht07

Kjell Orsborn
Uppsala Database Laboratory
Department of Information Technology, Uppsala University, Uppsala, Sweden

Data Mining Association Rules: Advanced Concepts and Algorithms

(Tan, Steinbach, Kumar ch. 7)

Kjell Orsborn

Department of Information Technology
Uppsala University, Uppsala, Sweden

Multi-level association rules (ch 7.3,7.4)

Multi-level association rules

- Why should we incorporate concept hierarchy?
- Rules at lower levels may not have enough support to appear in any frequent itemsets
- Rules at lower levels of the hierarchy are overly specific
- e.g., skim milk \rightarrow white bread, 2% milk \rightarrow wheat bread, skim milk \rightarrow wheat bread, etc. are indicative of association between milk and bread

Multi-level association rules

- How do support and confidence vary as we traverse the concept hierarchy?
- If X is the parent item for both X 1 and X 2 , then $\sigma(\mathrm{X}) \geq \sigma(\mathrm{X} 1)+\sigma(\mathrm{X} 2)$
- If $\quad \sigma(\mathrm{X} 1 \cup \mathrm{Y} 1) \geq$ minsup, and $\quad \mathrm{X}$ is parent of $\mathrm{X} 1, \mathrm{Y}$ is parent of Y 1 then $\quad \sigma(\mathrm{X} \cup \mathrm{Y} 1) \geq$ minsup, $\sigma(\mathrm{X} 1 \cup \mathrm{Y}) \geq$ minsup $\sigma(\mathrm{X} \cup \mathrm{Y}) \geq$ minsup
- If $\quad \operatorname{conf}(\mathrm{X} 1 \Rightarrow \mathrm{Y} 1) \geq$ minconf, then $\quad \operatorname{conf}(\mathrm{X} 1 \Rightarrow \mathrm{Y}) \geq$ minconf

Multi-level association rules

- Approach 1:
- Extend current association rule formulation by augmenting each transaction with higher level items

Original Transaction: \{skim milk, wheat bread\}
Augmented Transaction:
\{skim milk, wheat bread, milk, bread, food\}

- Issues:
- Items that reside at higher levels have much higher support counts
- if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data

Multi-level association rules

- Approach 2:
- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on
- Issues:
- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns

Sequence data

Sequence Database:

Object	Timestamp	Events
A	10	$2,3,5$
A	20	6,1
A	23	1
B	11	$4,5,6$
B	17	2
B	21	$7,8,1,2$
B	28	1,6
C	14	$1,8,7$

Examples of sequence data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Formal definition of a sequence

- A sequence is an ordered list of elements (transactions)
$-\quad s=<e_{1} e_{2} e_{3} \ldots>$
- Each element contains a collection of events (items)
$-\quad e_{i}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$
- Each element is attributed to a specific time or location
- Length of a sequence, $|s|$, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

- Web sequence:
$-\quad<\{$ Homepage $\}$ \{Electronics \} \{Digital Cameras\} \{Canon Digital Camera\} \{Shopping Cart\} \{Order Confirmation\} \{Return to Shopping\} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island: (http://stellarone.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)
$-<$ \{clogged resin\} \{outlet valve closure \} \{loss of feedwater\}
\{condenser polisher outlet valve shut\} \{booster pumps trip\}
\{main waterpump trips\} \{main turbine trips\} \{reactor pressure increases\}>
- Sequence of books checked out at a library:
- <\{Fellowship of the Ring\} \{The Two Towers\} \{Return of the King\}>

Formal definition of a subsequence

- A sequence $<a_{1} a_{2} \ldots a_{n}>$ is contained in another sequence $<b_{1} b_{2} \ldots b_{m}>$ $(\mathrm{m} \geq \mathrm{n})$ if there exist integers
$\mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{n}}$ such that $\mathrm{a}_{1} \subseteq \mathrm{~b}_{\mathrm{i} 1}, \mathrm{a}_{2} \subseteq \mathrm{~b}_{\mathrm{i} 1}, \ldots, \mathrm{a}_{\mathrm{n}} \subseteq \mathrm{b}_{\mathrm{in}}$

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{8\}>$	$<\{2\}\{3,5\}>$	Yes
$<\{1,2\}\{3,4\}>$	$<\{1\}\{2\}>$	No
$<\{2,4\}\{2,4\}\{2,5\}>$	$<\{2\}\{4\}>$	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is \geq minsup)

Sequential pattern mining: definition

- Given:
- a database of sequences
- a user-specified minimum support threshold, minsup
- Task:
- Find all subsequences with support \geq minsup

Sequential pattern mining: challenge

- Given a sequence: $<\{\mathrm{ab}\}\{\mathrm{cde}\}\{\mathrm{f}\}\{\mathrm{ghi} \mathrm{i}>$
- Examples of subsequences:

$$
<\{\mathrm{a}\}\{\mathrm{cd}\}\{\mathrm{f}\}\{\mathrm{g}\}>,<\{\mathrm{cde}\}>,<\{\mathrm{b}\}\{\mathrm{g}\}>, \text { etc. }
$$

- How many k-subsequences can be extracted from a given nsequence?

Answer :

$$
\binom{n}{k}=\binom{9}{4}=126
$$

Sequential pattern mining: example

Object	Timestamp	Events
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

Minsup $=50 \%$
Examples of Frequent Subsequences:

$<\{1,2\}>$	$\mathrm{s}=60 \%$
$<\{2,3\}>$	$\mathrm{s}=60 \%$
$<\{2,4\}>$	$\mathrm{s}=80 \%$
$<\{3\}\{5\}>$	$\mathrm{s}=80 \%$
$<\{1\}\{2\}>$	$\mathrm{s}=80 \%$
$<\{2\}\{2\}>$	$\mathrm{s}=60 \%$
$<\{1\}\{2,3\}>$	$\mathrm{s}=60 \%$
$<\{2\}\{2,3\}>$	$\mathrm{s}=60 \%$
$<\{1,2\}\{2,3\}>$	$\mathrm{s}=60 \%$

Extracting sequential patterns

- Given n events: i1, i2, i3, ..., in
- Candidate 1 -subsequences:
- <\{i1\}>, <\{i2\}>, <\{i3\}>, ..., <\{in\}>
- Candidate 2-subsequences:
- $\langle\{\mathrm{i} 1, \mathrm{i} 2\}>,<\{\mathrm{i} 1, \mathrm{i} 3\}>, \ldots,<\{\mathrm{i} 1\}\{\mathrm{in}\}>,<\{\mathrm{i} 1\}\{\mathrm{i} 2\}>, \ldots,<\{\mathrm{in}-1\}\{\mathrm{in}\}>$
- Candidate 3-subsequences:
- $\langle\{i 1, i 2, i 3\}>,<\{i 1, i 2, i 4\}>, \ldots,<\{i 1, i 2\}\{i 1\}>,<\{i 1, i 2\}\{i 2\}>, \ldots$,
- $<\{\mathrm{i} 1\}\{\mathrm{i} 1, \mathrm{i} 2\}>,<\{\mathrm{i} 1\}\{\mathrm{i} 1, \mathrm{i} 3\}>, \ldots,<\{\mathrm{i} 1\}\{\mathrm{i} 1\}\{\mathrm{i} 1\}>,<\{\mathrm{i} 1\}\{\mathrm{i} 1\}\{\mathrm{i} 2\}>, \ldots$

Generalized sequential pattern (GSP)

- Step 1:
- Make the first pass over the sequence database D to yield all the 1-element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
- Merge pairs of frequent subsequences found in the $(\mathrm{k}-1)$ th pass to generate candidate sequences that contain k items
- Candidate Pruning:
- Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
- Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
- Eliminate candidate k -sequences whose actual support is less than minsup

| Kjell Orsborn | $12 / 5 / 07$ | UPPSALA |
| :--- | :--- | :--- | UNIVERSITET

Candidate generation

- Base case ($\mathrm{k}=2$):
- Merging two frequent 1 -sequences $\left\langle\left\{\mathrm{i}_{1}\right\}>\right.$ and $<\left\{\mathrm{i}_{2}\right\}>$ will produce two candidate 2 -sequences: $<\left\{\mathrm{i}_{1}\right\}\left\{\mathrm{i}_{2}\right\}>$ and $<\left\{\mathrm{i}_{1} \mathrm{i}_{2}\right\}>$
- General case ($\mathrm{k}>2$):
- A frequent (k-1)-sequence w1 is merged with another frequent (k -1)-sequence w2 to produce a candidate k -sequence if the subsequence obtained by removing the first event in w 1 is the same as the subsequence obtained by removing the last event in w2
- The resulting candidate after merging is given by the sequence w1 extended with the last event of w2.
- If the last two events in w2 belong to the same element, then the last event in w 2 becomes part of the last element in w 1
- Otherwise, the last event in w2 becomes a separate element appended to the end of w1

Kjell Orsborn	$12 / 5 / 07$	UPPSALA	UNIVERSITET

Candidate generation examples

- Merging the sequences $\mathrm{w} 1=<\{1\}\{23\}\{4\}>$ and $w 2=<\{23\}\{45\}>$ will produce the candidate sequence $<\{1\}\{23\}\{45\}>$ because the last two events in w2 (4 and 5) belong to the same element
- Merging the sequences
$\mathrm{w} 1=<\{1\}\{23\}\{4\}>$ and $w 2=<\{23\}\{4\}\{5\}>$ will produce the candidate sequence $<\{1\}\{23\}\{4\}\{5\}>$ because the last two events in w2 (4 and 5) do not belong to the same element
- We do not have to merge the sequences
$\mathrm{w} 1=<\{1\}\{26\}\{4\}>$ and $w 2=<\{1\}\{2\}\{45\}>$
to produce the candidate $<\{1\}\{26\}\{45\}>$ because if the latter is a viable candidate, then it can be obtained by merging w1 with $<\{26\}\{45\}>$

GSP example

Frequent 3-sequences
$<\{1\}\{2\}\{3\}>$
< 11$\}\{25\}>$
$<\{1\}\{5\}\{3\}>$
< $\{2\}\{3\}\{4\}>$
< 2 5\} \{3\}>
< $\{3\}\{4\}\{5\}$ >
< $\{5\}\{34\}>$

$$
\begin{aligned}
& \text { Candidate } \\
& \text { Generation } \\
& \\
& <\{1\}\{2\}\{3\}\{4\}> \\
& <\{1\}\{25\}\{3\}> \\
& <\{1\}\{5\}\{34\}> \\
& <\{2\}\{3\}\{4\}\{5\}> \\
& <\{25\}\{34\}>
\end{aligned}
$$

Candidate
Pruning

$$
<\{1\}\{25\}\{3\}>
$$

Timing constraints (I)

$$
\begin{aligned}
& x_{g}: \text { max-gap } \\
& \mathrm{n}_{\mathrm{g}}: \text { min-gap } \\
& \mathrm{m}_{\mathrm{s}}: \text { maximum span }
\end{aligned}
$$

$\mathrm{x}_{\mathrm{g}}=2, \mathrm{n}_{\mathrm{g}}=0, \mathrm{~m}_{\mathrm{s}}=4$

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{4,7\}\{4,5\}\{8\}>$	$<\{6\}\{5\}>$	Yes
$<\{1\}\{2\}\{3\}\{4\}\{5\}>$	$<\{1\}\{4\}>$	No
$<\{1\}\{2,3\}\{3,4\}\{4,5\}>$	$<\{2\}\{3\}\{5\}>$	Yes
$<\{1,2\}\{3\}\{2,3\}\{3,4\}\{2,4\}\{4,5\}>$	$<\{1,2\}\{5\}>$	No

Mining sequential patterns with timing constraints

- Approach 1:
- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns
- Approach 2:
- Modify GSP to directly prune candidates that violate timing constraints
- Question:
- Does Apriori principle still hold?

Apriori principle for sequence data

Object	Timestamp	Events
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

Suppose:
$x_{g}=1$ (max-gap)
$n_{g}=0$ (min-gap)
$m_{s}=5$ (maximum span)
minsup $=60 \%$
$<\{2\}\{5\}>$ support $=40 \%$
but
$<\{2\}\{3\}\{5\}>$ support $=60 \%$

Problem exists because of max-gap constraint
No such problem if max-gap is infinite

Contiguous subsequences

- s is a contiguous subsequence of

$$
\left.\mathrm{w}=\left\langle\mathrm{e}_{1}\right\rangle\left\langle\mathrm{e}_{2}\right\rangle \ldots<\mathrm{e}_{\mathrm{k}}\right\rangle
$$

if any of the following conditions hold:
$-s$ is obtained from w by deleting an item from either e_{1} or e_{k}
$-s$ is obtained from w by deleting an item from any element e_{i} that contains more than 2 items

- s is a contiguous subsequence of s^{\prime} and s^{\prime} is a contiguous subsequence of w (recursive definition)
- Examples: $\mathrm{s}=<\{1\}\{2\}>$
- is a contiguous subsequence of

$$
<\{1\}\{23\}>,<\{12\}\{2\}\{3\}>, \text { and }<\{34\}\{12\}\{23\}\{4\}>
$$

- is not a contiguous subsequence of
$<\{1\}\{3\}\{2\}>$ and $<\{2\}\{1\}\{3\}\{2\}>$

Modified candidate pruning step

- Without maxgap constraint:
- A candidate k-sequence is pruned if at least one of its (k - 1)-subsequences is infrequent
- With maxgap constraint:
- A candidate k-sequence is pruned if at least one of its contiguous ($k-1$)subsequences is infrequent

Timing constraints (II)

$$
x_{g}: \text { max-gap }
$$

n_{g} : min-gap
ws: window size
m_{s} : maximum span

$$
x_{g}=2, n_{g}=0, w s=1, m_{s}=5
$$

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{4,7\}\{4,6\}\{8\}>$	$<\{3\}\{5\}>$	No
$<\{1\}\{2\}\{3\}\{4\}\{5\}>$	$<\{1,2\}\{3\}>$	Yes
$<\{1,2\}\{2,3\}\{3,4\}\{4,5\}>$	$<\{1,2\}\{3,4\}>$	Yes
Kjell Orsborn		

Modified support counting step

- Given a candidate pattern: $<\{\mathrm{a}, \mathrm{c}\}>$
- Any data sequences that contain
$<\ldots\{a c\} \ldots>$,
$<\ldots\{a\} \ldots\{c\} \ldots>$ (where time $(\{c\})-\operatorname{time}(\{a\}) \leq w s)$
$<\ldots\{c\} \ldots\{a\} \ldots>\quad$ (where time $(\{a\})-\operatorname{time}(\{c\}) \leq w s)$
will contribute to the support count of candidate pattern

General support counting schemes

Object's Timeline

$\begin{array}{cc}\text { Sequence: }(\mathrm{p})(\mathrm{q}) \\ \text { Method } & \text { Support } \\ & \text { Count }\end{array}$

COBJ
1

CWIN 6

CMINWIN 4
Assume:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{g}}=2(\text { max-gap }) \\
& \mathrm{n}_{\mathrm{g}}=0(\text { min-gap }) \\
& \mathrm{ws}=0(\text { window size }) \\
& \mathrm{m}_{\mathrm{s}}=2 \text { (maximum span) }
\end{aligned}
$$

Other formulation

- In some domains, we may have only one very long time series
- Example:
- monitoring network traffic events for attacks
- monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
- This problem is also known as frequent episode mining

