
Kjell Orsborn 12/5/07

1UU - IT - UDBL

DATA MINING - 1DL105, 1DL111

 Fall 2007

An introductory class in data mining

http://user.it.uu.se/~udbl/dut-ht2007/
alt. http://www.it.uu.se/edu/course/homepage/infoutv/ht07

Kjell Orsborn
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

Kjell Orsborn 12/5/07

2UU - IT - UDBL

Data Mining
Association Rules: Advanced Concepts and Algorithms

(Tan, Steinbach, Kumar ch. 7)

Kjell Orsborn

Department of Information Technology
Uppsala University, Uppsala, Sweden

Kjell Orsborn 12/5/07

3UU - IT - UDBL

Multi-level association rules (ch 7.3,7.4)
Food

Bread

Milk

Skim 2%

Electronics

Computers Home

Desktop Laptop
Wheat White

Foremost Kemps

DVDTV

Printer Scanner

Accessory

Kjell Orsborn 12/5/07

4UU - IT - UDBL

Multi-level association rules

• Why should we incorporate concept hierarchy?
– Rules at lower levels may not have enough support to appear in any

frequent itemsets

– Rules at lower levels of the hierarchy are overly specific
• e.g., skim milk → white bread, 2% milk → wheat bread,

skim milk → wheat bread, etc.
are indicative of association between milk and bread

Kjell Orsborn 12/5/07

5UU - IT - UDBL

Multi-level association rules

• How do support and confidence vary as we traverse the concept
hierarchy?
– If X is the parent item for both X1 and X2, then
σ(X) ≥ σ(X1) + σ(X2)

– If σ(X1 ∪ Y1) ≥ minsup,
and X is parent of X1, Y is parent of Y1
then σ(X ∪ Y1) ≥ minsup, σ(X1 ∪ Y) ≥ minsup

σ(X ∪ Y) ≥ minsup

– If conf(X1 ⇒ Y1) ≥ minconf,
then conf(X1 ⇒ Y) ≥ minconf

Kjell Orsborn 12/5/07

6UU - IT - UDBL

Multi-level association rules

• Approach 1:
– Extend current association rule formulation by augmenting each transaction with

higher level items

Original Transaction: {skim milk, wheat bread}
Augmented Transaction:

 {skim milk, wheat bread, milk, bread, food}

• Issues:
– Items that reside at higher levels have much higher support counts

• if support threshold is low, too many frequent patterns involving items from the higher
levels

– Increased dimensionality of the data

Kjell Orsborn 12/5/07

7UU - IT - UDBL

Multi-level association rules

• Approach 2:
– Generate frequent patterns at highest level first

– Then, generate frequent patterns at the next highest level, and so on

• Issues:
– I/O requirements will increase dramatically because we need to perform

more passes over the data
– May miss some potentially interesting cross-level association patterns

Kjell Orsborn 12/5/07

8UU - IT - UDBL

10 15 20 25 30 35

2

3

5

6

1

1

Timeline

Object A:

Object B:

Object C:

4

5

6

2 7

8

1

2

1

6

1

7

8

Object Timestamp Events
A 10 2, 3, 5
A 20 6, 1
A 23 1
B 11 4, 5, 6
B 17 2
B 21 7, 8, 1, 2
B 28 1, 6
C 14 1, 8, 7

Sequence Database:

Sequence data

Kjell Orsborn 12/5/07

9UU - IT - UDBL

Examples of sequence data

Bases A,T,G,CAn element of the DNA sequenceDNA sequence of a particular speciesGenome sequences

Types of alarms generated by
sensors

Events triggered by a sensor at
time t

History of events generated by a given
sensor

Event data

Home page, index page,
contact info, etc

A collection of files viewed by a
Web visitor after a single mouse
click

Browsing activity of a particular Web
visitor

Web Data

Books, diary products, CDs,
etc

A set of items bought by a
customer at time t

Purchase history of a given customerCustomer

Event
(Item)

Element (Transaction)SequenceSequence
Database

Sequence

E1
E2

E1
E3 E2 E3

E4E2

Element
(Transaction) Event

(Item)

Kjell Orsborn 12/5/07

10UU - IT - UDBL

Formal definition of a sequence

• A sequence is an ordered list of elements (transactions)

– s = < e1 e2 e3 … >

– Each element contains a collection of events (items)

– ei = {i1, i2, …, ik}

– Each element is attributed to a specific time or location

• Length of a sequence, |s|, is given by the number of elements of the sequence

• A k-sequence is a sequence that contains k events (items)

Kjell Orsborn 12/5/07

11UU - IT - UDBL

Examples of Sequence

• Web sequence:

– < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera}
{Shopping Cart} {Order Confirmation} {Return to Shopping} >

• Sequence of initiating events causing the nuclear accident at 3-mile Island:
(http://stellar-
one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)
– < {clogged resin} {outlet valve closure} {loss of feedwater}

{condenser polisher outlet valve shut} {booster pumps trip}
{main waterpump trips} {main turbine trips} {reactor pressure increases}>

• Sequence of books checked out at a library:
– <{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Kjell Orsborn 12/5/07

12UU - IT - UDBL

< {2,4} {2,4} {2,5} >

< {1,2} {3,4} >

< {2,4} {3,5,6} {8} >

Data sequence

Yes< {2} {4} >

No< {1} {2} >

Yes< {2} {3,5} >

Contain?Subsequence

Formal definition of a subsequence

• A sequence <a1 a2 … an> is contained in another sequence <b1 b2 … bm>
(m ≥ n) if there exist integers
i1 < i2 < … < in such that a1 ⊆ bi1 , a2 ⊆ bi1, …, an ⊆ bin

• The support of a subsequence w is defined as the fraction of data sequences
that contain w

• A sequential pattern is a frequent subsequence (i.e., a subsequence whose
support is ≥ minsup)

Kjell Orsborn 12/5/07

13UU - IT - UDBL

Sequential pattern mining: definition

• Given:
– a database of sequences
– a user-specified minimum support threshold, minsup

• Task:
– Find all subsequences with support ≥ minsup

Kjell Orsborn 12/5/07

14UU - IT - UDBL

Sequential pattern mining: challenge

• Given a sequence: <{a b} {c d e} {f} {g h i}>
– Examples of subsequences:

<{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.

• How many k-subsequences can be extracted from a given n-
sequence?

 <{a b} {c d e} {f} {g h i}> n = 9

k=4: Y _ _ Y Y _ _ _ Y

 <{a} {d e} {i}>

126
4

9

:Answer

=!!
"

#
$$
%

&
=!!

"

#
$$
%

&

k

n

Kjell Orsborn 12/5/07

15UU - IT - UDBL

Sequential pattern mining: example

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} > s=60%
< {2,3} > s=60%
< {2,4}> s=80%
< {3} {5}> s=80%
< {1} {2} > s=80%
< {2} {2} > s=60%
< {1} {2,3} > s=60%
< {2} {2,3} > s=60%
< {1,2} {2,3} > s=60%

Object Timestamp Events

A 1 1,2,4

A 2 2,3

A 3 5

B 1 1,2

B 2 2,3,4

C 1 1, 2

C 2 2,3,4

C 3 2,4,5

D 1 2

D 2 3, 4

D 3 4, 5

E 1 1, 3

E 2 2, 4, 5

Kjell Orsborn 12/5/07

16UU - IT - UDBL

Extracting sequential patterns

• Given n events: i1, i2, i3, …, in

• Candidate 1-subsequences:
• <{i1}>, <{i2}>, <{i3}>, …, <{in}>

• Candidate 2-subsequences:
• <{i1, i2}>, <{i1, i3}>, …, <{i1} {i1}>, <{i1} {i2}>, …, <{in-1} {in}>

• Candidate 3-subsequences:
• <{i1, i2 , i3}>, <{i1, i2 , i4}>, …, <{i1, i2} {i1}>, <{i1, i2} {i2}>, …,
• <{i1} {i1 , i2}>, <{i1} {i1 , i3}>, …, <{i1} {i1} {i1}>, <{i1} {i1} {i2}>, …

Kjell Orsborn 12/5/07

17UU - IT - UDBL

Generalized sequential pattern (GSP)
• Step 1:

– Make the first pass over the sequence database D to yield all the 1-element
frequent sequences

• Step 2:

Repeat until no new frequent sequences are found
– Candidate Generation:

• Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate
sequences that contain k items

– Candidate Pruning:
• Prune candidate k-sequences that contain infrequent (k-1)-subsequences

– Support Counting:
• Make a new pass over the sequence database D to find the support for these candidate

sequences
– Candidate Elimination:

• Eliminate candidate k-sequences whose actual support is less than minsup

Kjell Orsborn 12/5/07

18UU - IT - UDBL

Candidate generation

• Base case (k=2):
– Merging two frequent 1-sequences <{i1}> and <{i2}> will produce two

candidate 2-sequences: <{i1} {i2}> and <{i1 i2}>

• General case (k>2):
– A frequent (k-1)-sequence w1 is merged with another frequent

(k-1)-sequence w2 to produce a candidate k-sequence if the subsequence
obtained by removing the first event in w1 is the same as the subsequence
obtained by removing the last event in w2

• The resulting candidate after merging is given by the sequence w1 extended with the
last event of w2.

– If the last two events in w2 belong to the same element, then the last event in w2 becomes
part of the last element in w1

– Otherwise, the last event in w2 becomes a separate element appended to the end of w1

Kjell Orsborn 12/5/07

19UU - IT - UDBL

Candidate generation examples
• Merging the sequences

w1=<{1} {2 3} {4}> and w2 =<{2 3} {4 5}>
will produce the candidate sequence < {1} {2 3} {4 5}> because the last two
events in w2 (4 and 5) belong to the same element

• Merging the sequences
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4} {5}>
will produce the candidate sequence < {1} {2 3} {4} {5}> because the last
two events in w2 (4 and 5) do not belong to the same element

• We do not have to merge the sequences
w1 =<{1} {2 6} {4}> and w2 =<{1} {2} {4 5}>
to produce the candidate < {1} {2 6} {4 5}> because if the latter is a viable
candidate, then it can be obtained by merging w1 with
< {2 6} {4 5}>

Kjell Orsborn 12/5/07

20UU - IT - UDBL

GSP example

< {1} {2} {3} >

< {1} {2 5} >

< {1} {5} {3} >

< {2} {3} {4} >

< {2 5} {3} >

< {3} {4} {5} >

< {5} {3 4} >

< {1} {2} {3} {4} >

< {1} {2 5} {3} >

< {1} {5} {3 4} >

< {2} {3} {4} {5} >

< {2 5} {3 4} >
< {1} {2 5} {3} >

Frequent

3-sequences

Candidate

Generation

Candidate

Pruning

Kjell Orsborn 12/5/07

21UU - IT - UDBL

Timing constraints (I)
{A B} {C} {D E}

<= ms

<= xg >ng

xg: max-gap

ng: min-gap

ms: maximum span

No< {1} {4} >< {1} {2} {3} {4} {5}>

< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>

< {1} {2,3} {3,4} {4,5}>

< {2,4} {3,5,6} {4,7} {4,5} {8} >
Data sequence

No< {1,2} {5} >

Yes< {2} {3} {5} >

Yes< {6} {5} >
Contain?Subsequence

xg = 2, ng = 0, ms= 4

Kjell Orsborn 12/5/07

22UU - IT - UDBL

Mining sequential patterns with timing constraints

• Approach 1:
– Mine sequential patterns without timing constraints
– Postprocess the discovered patterns

• Approach 2:
– Modify GSP to directly prune candidates that violate timing constraints
– Question:

• Does Apriori principle still hold?

Kjell Orsborn 12/5/07

23UU - IT - UDBL

Apriori principle for sequence data
Object Timestamp Events

A 1 1,2,4

A 2 2,3

A 3 5

B 1 1,2

B 2 2,3,4

C 1 1, 2

C 2 2,3,4

C 3 2,4,5

D 1 2

D 2 3, 4

D 3 4, 5

E 1 1, 3

E 2 2, 4, 5

Suppose:

xg = 1 (max-gap)

ng = 0 (min-gap)

ms = 5 (maximum span)

minsup = 60%

<{2} {5}> support = 40%

but

<{2} {3} {5}> support = 60%

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Kjell Orsborn 12/5/07

24UU - IT - UDBL

Contiguous subsequences
• s is a contiguous subsequence of

w = <e1>< e2>…< ek>
if any of the following conditions hold:
– s is obtained from w by deleting an item from either e1 or ek
– s is obtained from w by deleting an item from any element ei that contains more

than 2 items
– s is a contiguous subsequence of s’ and s’ is a contiguous subsequence of w

(recursive definition)

• Examples: s = < {1} {2} >
– is a contiguous subsequence of

 < {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >
– is not a contiguous subsequence of

 < {1} {3} {2}> and < {2} {1} {3} {2}>

Kjell Orsborn 12/5/07

25UU - IT - UDBL

Modified candidate pruning step

• Without maxgap constraint:
– A candidate k-sequence is pruned if at least one of its (k-1)-subsequences

is infrequent

• With maxgap constraint:
– A candidate k-sequence is pruned if at least one of its contiguous (k-1)-

subsequences is infrequent

Kjell Orsborn 12/5/07

26UU - IT - UDBL

Timing constraints (II)

{A B} {C} {D E}

<= ms

<= xg >ng <= ws

xg: max-gap

ng: min-gap

ws: window size

ms: maximum span

< {1,2} {2,3} {3,4} {4,5}>

< {1} {2} {3} {4} {5}>

< {2,4} {3,5,6} {4,7} {4,6} {8} >

Data sequence

Yes< {1,2} {3,4} >

Yes< {1,2} {3} >

No< {3} {5} >

Contain?Subsequence

xg = 2, ng = 0, ws = 1, ms= 5

Kjell Orsborn 12/5/07

27UU - IT - UDBL

Modified support counting step

• Given a candidate pattern: <{a, c}>
– Any data sequences that contain

<… {a c} … >,
<… {a} … {c}…> (where time({c}) – time({a}) ≤ ws)
<…{c} … {a} …> (where time({a}) – time({c}) ≤ ws)

will contribute to the support count of candidate pattern

General support counting schemes

p

Object's Timeline
Sequence: (p) (q)

Method Support

 Count

COBJ 1

1

CWIN 6

CMINWIN 4

p q

p

q q

p

qq

p

2 3 4 5 6 7

CDIST_O 8

CDIST 5

Assume:

xg = 2 (max-gap)

ng = 0 (min-gap)

ws = 0 (window size)

ms = 2 (maximum span)

Kjell Orsborn 12/5/07

29UU - IT - UDBL

Other formulation

• In some domains, we may have only one very long time series
– Example:

• monitoring network traffic events for attacks
• monitoring telecommunication alarm signals

• Goal is to find frequent sequences of events in the time series
– This problem is also known as frequent episode mining

E1

E2

E1

E2

E1

E2

E3

E4 E3 E4

E1

E2

E2 E4

E3 E5

 E2

E3 E5

E1

E2 E3 E1

Pattern: <E1> <E3>

