### **DATA MINING - 1DL105, 1DL111**

#### Fall 2007

### An introductory class in data mining

http://user.it.uu.se/~udbl/dut-ht2007/alt. http://www.it.uu.se/edu/course/homepage/infoutv/ht07

Kjell Orsborn
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden



# Data Mining Association Rules: Advanced Concepts and Algorithms

(Tan, Steinbach, Kumar ch. 7)

Kjell Orsborn

Department of Information Technology Uppsala University, Uppsala, Sweden



### Multi-level association rules (ch 7.3,7.4)





### Multi-level association rules

- Why should we incorporate concept hierarchy?
  - Rules at lower levels may not have enough support to appear in any frequent itemsets
  - Rules at lower levels of the hierarchy are overly specific
    - e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc.
       are indicative of association between milk and bread



### Multi-level association rules

- How do support and confidence vary as we traverse the concept hierarchy?
  - If X is the parent item for both X1 and X2, then  $\sigma(X) \ge \sigma(X1) + \sigma(X2)$

```
- If \sigma(X1 \cup Y1) \ge \text{minsup},
and X is parent of X1, Y is parent of Y1
then \sigma(X \cup Y1) \ge \text{minsup}, \sigma(X1 \cup Y) \ge \text{minsup}
\sigma(X \cup Y) \ge \text{minsup}
```

- If 
$$conf(X1 \Rightarrow Y1) \ge minconf$$
,  
then  $conf(X1 \Rightarrow Y) \ge minconf$ 



### Multi-level association rules

#### • Approach 1:

 Extend current association rule formulation by augmenting each transaction with higher level items

```
Original Transaction: {skim milk, wheat bread}
Augmented Transaction:
{skim milk, wheat bread, milk, bread, food}
```

#### Issues:

- Items that reside at higher levels have much higher support counts
  - if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data



### Multi-level association rules

### • Approach 2:

- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on

#### • Issues:

- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns



# Sequence data

#### **Sequence Database:**

| Object | Timestamp | Events     |
|--------|-----------|------------|
| Α      | 10        | 2, 3, 5    |
| Α      | 20        | 6, 1       |
| Α      | 23        | 1          |
| В      | 11        | 4, 5, 6    |
| В      | 17        | 2          |
| В      | 21        | 7, 8, 1, 2 |
| В      | 28        | 1, 6       |
| С      | 14        | 1, 8, 7    |



UPPSALA UNIVERSITET

### **Examples of sequence data**

| Sequence<br>Database | Sequence                                      | Element (Transaction)                                                          | Event<br>(Item)                          |
|----------------------|-----------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|
| Customer             | Purchase history of a given customer          | A set of items bought by a customer at time t                                  | Books, diary products, CDs, etc          |
| Web Data             | Browsing activity of a particular Web visitor | A collection of files viewed by a<br>Web visitor after a single mouse<br>click | Home page, index page, contact info, etc |
| Event data           | History of events generated by a given sensor | Events triggered by a sensor at time t                                         | Types of alarms generated by sensors     |
| Genome sequences     | DNA sequence of a particular species          | An element of the DNA sequence                                                 | Bases A,T,G,C                            |



# Formal definition of a sequence

• A sequence is an ordered list of elements (transactions)

$$s = \langle e_1 e_2 e_3 ... \rangle$$

Each element contains a collection of events (items)

$$- e_{i} = \{i_{1}, i_{2}, ..., i_{k}\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, lsl, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)



# **Examples of Sequence**

- Web sequence:
  - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island: (http://stellar-one.com/nuclear/staff\_reports/summary\_SOE\_the\_initiating\_event.htm)
  - < {clogged resin} {outlet valve closure} {loss of feedwater}
     {condenser polisher outlet valve shut} {booster pumps trip}
     {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:
  - <{Fellowship of the Ring} {The Two Towers} {Return of the King}>



### Formal definition of a subsequence

• A sequence  $\langle a_1 \ a_2 \dots a_n \rangle$  is contained in another sequence  $\langle b_1 \ b_2 \dots b_m \rangle$   $(m \ge n)$  if there exist integers  $i_1 < i_2 < \dots < i_n$  such that  $a_1 \subseteq b_{i1}$ ,  $a_2 \subseteq b_{i1}$ , ...,  $a_n \subseteq b_{in}$ 

| Data sequence         | Subsequence   | Contain? |
|-----------------------|---------------|----------|
| < {2,4} {3,5,6} {8} > | < {2} {3,5} > | Yes      |
| < {1,2} {3,4} >       | < {1} {2} >   | No       |
| < {2,4} {2,4} {2,5} > | < {2} {4} >   | Yes      |

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

uppsala universitet

# Sequential pattern mining: definition

- Given:
  - a database of sequences
  - a user-specified minimum support threshold, minsup
- Task:
  - Find all subsequences with support ≥ minsup



# Sequential pattern mining: challenge

- Given a sequence:  $\langle \{a b\} \{c d e\} \{f\} \{g h i\} \rangle$ 
  - Examples of subsequences:

$$\{a\} \{c d\} \{f\} \{g\} >, \{c d e\} >, \{b\} \{g\} >, etc.$$

• How many k-subsequences can be extracted from a given n-sequence?

Answer:

$$\binom{n}{k} = \binom{9}{4} = 126$$



# Sequential pattern mining: example

| Object | Timestamp | Events  |
|--------|-----------|---------|
| Α      | 1         | 1,2,4   |
| Α      | 2         | 2,3     |
| Α      | 3         | 5       |
| В      | 1         | 1,2     |
| В      | 2         | 2,3,4   |
| С      | 1         | 1, 2    |
| С      | 2         | 2,3,4   |
| С      | 3         | 2,4,5   |
| D      | 1         | 2       |
| D      | 2         | 3, 4    |
| D      | 3         | 4, 5    |
| E      | 1         | 1, 3    |
| E      | 2         | 2, 4, 5 |

*Minsup* = 50%

#### **Examples of Frequent Subsequences:**



# **Extracting sequential patterns**

- Given n events: i1, i2, i3, ..., in
- Candidate 1-subsequences:
  - <{i1}>, <{i2}>, <{i3}>, ..., <{in}>
- Candidate 2-subsequences:
  - <{i1, i2}>, <{i1, i3}>, ..., <{i1} {i1}>, <{i1} {i2}>, ..., <{in-1} {in}>
- Candidate 3-subsequences:
  - <{i1, i2, i3}>, <{i1, i2, i4}>, ..., <{i1, i2} {i1}>, <{i1, i2} {i2}>, ...,
  - <{i1} {i1, i2}>, <{i1} {i1, i3}>, ..., <{i1} {i1} {i1}>, <{i1} {i1} {i2}>, ...



### Generalized sequential pattern (GSP)

- Step 1:
  - Make the first pass over the sequence database D to yield all the 1-element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
  - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
  - Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
  - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
  - Eliminate candidate k-sequences whose actual support is less than minsup



### **Candidate generation**

- Base case (k=2):
  - Merging two frequent 1-sequences  $<\{i_1\}>$  and  $<\{i_2\}>$  will produce two candidate 2-sequences:  $<\{i_1\}$   $\{i_2\}>$  and  $<\{i_1$   $i_2\}>$
- General case (k>2):
  - A frequent (k-1)-sequence w1 is merged with another frequent (k-1)-sequence w2 to produce a candidate k-sequence if the subsequence obtained by removing the first event in w1 is the same as the subsequence obtained by removing the last event in w2
    - The resulting candidate after merging is given by the sequence w1 extended with the last event of w2.
      - If the last two events in w2 belong to the same element, then the last event in w2 becomes part of the last element in w1
      - Otherwise, the last event in w2 becomes a separate element appended to the end of w1



# Candidate generation examples

- Merging the sequences
   w1=<{1} {2 3} {4}> and w2 =<{2 3} {4 5}>
   will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w2 (4 and 5) belong to the same element
- Merging the sequences  $w1=<\{1\}$   $\{2\ 3\}$   $\{4\}>$  and  $w2=<\{2\ 3\}$   $\{4\}$   $\{5\}>$  will produce the candidate sequence  $<\{1\}$   $\{2\ 3\}$   $\{4\}$   $\{5\}>$  because the last two events in w2 (4 and 5) do not belong to the same element
- We do not have to merge the sequences
  w1 =<{1} {2 6} {4}> and w2 =<{1} {2} {4 5}>
  to produce the candidate < {1} {2 6} {4 5}> because if the latter is a viable candidate, then it can be obtained by merging w1 with
  < {2 6} {4 5}>

# **GSP** example

# Frequent 3-sequences

- < {1} {2} {3} >
- < {1} {2 5} >
- < {1} {5} {3} >
- < {2} {3} {4} >
- < {2 5} {3} >
- < {3} {4} {5} >
- < {5} {3 4} >

### Candidate Generation

- < {1} {2} {3} {4} >
- < {1} {2 5} {3} >
- < {1} {5} {3 4} >
- < {2} {3} {4} {5} >
- < {2 5} {3 4} >

# Candidate Pruning

< {1} {2 5} {3} >



### Timing constraints (I)



x<sub>g</sub>: max-gap

n<sub>g</sub>: min-gap

m<sub>s</sub>: maximum span

$$x_g = 2$$
,  $n_g = 0$ ,  $m_s = 4$ 

| Data sequence                        | Subsequence     | Contain? |
|--------------------------------------|-----------------|----------|
| < {2,4} {3,5,6} {4,7} {4,5} {8} >    | < {6} {5} >     | Yes      |
| < {1} {2} {3} {4} {5}>               | < {1} {4} >     | No       |
| < {1} {2,3} {3,4} {4,5}>             | < {2} {3} {5} > | Yes      |
| < {1,2} {3} {2,3} {3,4} {2,4} {4,5}> | < {1,2} {5} >   | No       |



### Mining sequential patterns with timing constraints

- Approach 1:
  - Mine sequential patterns without timing constraints
  - Postprocess the discovered patterns
- Approach 2:
  - Modify GSP to directly prune candidates that violate timing constraints
  - Question:
    - Does Apriori principle still hold?



### Apriori principle for sequence data

| Object | Timestamp | Events         |
|--------|-----------|----------------|
| Α      | 1         | 1,2,4          |
| Α      | 2         | 2,3            |
| Α      | 3         | 5              |
| В      | 1         | 1,2            |
| В      | 2         | 2,3,4          |
| С      | 1         | 1, 2           |
| С      | 2         | 2,3,4<br>2,4,5 |
| С      | 3         | 2,4,5          |
| D      | 1         | 2              |
| D      | 2         | 3, 4           |
| D      | 3         | 4, 5           |
| E      | 1         | 1, 3           |
| E      | 2         | 2, 4, 5        |

#### Suppose:

$$x_g = 1 \text{ (max-gap)}$$
 $n_g = 0 \text{ (min-gap)}$ 
 $m_s = 5 \text{ (maximum span)}$ 
 $minsup = 60\%$ 

Problem exists because of max-gap constraint

No such problem if max-gap is infinite



# Contiguous subsequences

s is a contiguous subsequence of

$$w = \langle e_1 \rangle \langle e_2 \rangle ... \langle e_k \rangle$$

if any of the following conditions hold:

- s is obtained from w by deleting an item from either e<sub>1</sub> or e<sub>k</sub>
- s is obtained from w by deleting an item from any element e<sub>i</sub> that contains more than 2 items
- s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples:  $s = < \{1\} \{2\} >$ 
  - is a contiguous subsequence of
    < {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4}>
  - is not a contiguous subsequence of{1} {3} {2}> and < {2} {1} {3} {2}>



# Modified candidate pruning step

- Without maxgap constraint:
  - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
  - A candidate k-sequence is pruned if at least one of its contiguous (k-1)subsequences is infrequent



### Timing constraints (II)



x<sub>g</sub>: max-gap

n<sub>g</sub>: min-gap

ws: window size

m<sub>s</sub>: maximum span

$$x_g = 2$$
,  $n_g = 0$ , ws = 1,  $m_s = 5$ 

| Data sequence                     | Subsequence     | Contain? |
|-----------------------------------|-----------------|----------|
| < {2,4} {3,5,6} {4,7} {4,6} {8} > | < {3} {5} >     | No       |
| < {1} {2} {3} {4} {5}>            | < {1,2} {3} >   | Yes      |
| < {1,2} {2,3} {3,4} {4,5}>        | < {1,2} {3,4} > | Yes      |

UPPSALA UNIVERSITET

# Modified support counting step

- Given a candidate pattern: <{a, c}>
  - Any data sequences that contain

```
<... {a c} ... >,
<... {a} ... {c}...> ( where time({c}) – time({a}) ≤ ws)
<...{c} ... {a} ...> (where time({a}) – time({c}) ≤ ws)
```

will contribute to the support count of candidate pattern



### General support counting schemes



Assume:  $x_g = 2 \text{ (max-gap)}$   $n_g = 0 \text{ (min-gap)}$  ws = 0 (window size) $m_s = 2 \text{ (maximum span)}$ 

### Other formulation

- In some domains, we may have only one very long time series
  - Example:
    - monitoring network traffic events for attacks
    - monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
  - This problem is also known as frequent episode mining











Pattern: <E1> <E3>

