DATA MINING - 1DL105, 1DL111

Fall 2007

An introductory class in data mining

http://user.it.uu.se/~udbl/dut-ht2007/
alt. http://www.it.uu.se/edu/course/homepage/infoutv/ht07

Kjell Orsborn
Uppsala Database Laboratory
Department of Information Technology, Uppsala University, Uppsala, Sweden

Data Mining
 Association Analysis: Basic Concepts and Algorithms

(Tan, Steinbach, Kumar ch. 6)

Kjell Orsborn

Department of Information Technology
Uppsala University, Uppsala, Sweden

Market basket analysis - Association rule mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

Example of Association Rules

TID	Items
$\mathbf{1}$	Bread, Milk
$\mathbf{2}$	Bread, Diaper, Beer, Eggs
$\mathbf{3}$	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
$\mathbf{5}$	Bread, Milk, Diaper, Coke

$$
\begin{aligned}
& \{\text { Diaper }\} \rightarrow\{\text { Beer }\}, \\
& \text { \{Milk, Bread }\} \rightarrow\{\text { Eggs,Coke }\}, \\
& \{\text { Beer, Bread }\} \rightarrow\{\text { Milk }\},
\end{aligned}
$$

Implication means co-occurrence, not causality!

Definition: frequent itemset

- Itemset
- A collection of one or more items
- Example: \{Milk, Bread, Diaper\}
- k-itemset
- An itemset that contains k items
- Support count (σ)
- Frequency of occurrence of an itemset
- E.g. $\sigma(\{$ Milk, Bread,Diaper $\})=2$
- Support
- Fraction of transactions that contain an itemset
- E.g. s(\{Milk, Bread, Diaper\}) $=2 / 5$
- Frequent Itemset
- An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: association rule

- Association Rule
- An implication expression of the form $\mathrm{X} \rightarrow \mathrm{Y}$, where X and Y are itemsets
- Example:
$\{$ Milk, Diaper\} \rightarrow \{Beer $\}$
- Rule Evaluation Metrics
- Support (s)
- Fraction of transactions that contain both X and Y
- Confidence (c)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:
$\{$ Milk, Diaper $\} \Rightarrow$ Beer

- Measures how often items in Y appear in transactions that contain X

$$
\begin{gathered}
s=\frac{\sigma(\text { Milk, Diaper, Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4 \\
c=\frac{\sigma(\text { Milk, Diaper, Beer })}{\sigma(\text { Milk, Diaper })}=\frac{2}{\substack{\text { 3, \%ind } \\
\text { UPSALA } \\
\text { UNIVERITET }}}<0.67
\end{gathered}
$$

Association rule mining task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
\Rightarrow Computationally prohibitive!

Mining association rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Observations:

- All the above rules are binary partitions of the same itemset:
\{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining association rules

- Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent itemset generation

Frequent itemset generation

- Brute-force approach:
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

Transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Match each transaction against every candidate
- Complexity $\sim \mathrm{O}(\mathrm{NMw})$, according to Tan et al. $=>$ Expensive since $\mathrm{M}=2^{\mathrm{d}}!!!$
- (actually $\sim \mathrm{O}\left(\mathrm{NMw}^{2} / 2\right)$ is probably a better estimation of the brute force approache

Computational complexity

- Given d unique items:
- Total number of itemsets $=2^{\text {d }}$
- Total number of possible association rules:

Frequent itemset generation strategies

- Reduce the number of candidates (M)
- Complete search: $\mathrm{M}=2^{\mathrm{d}}$
- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
- Reduce size of N as the size of itemset increases
- Used by DHP (dynamic hashing and pruning) and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Reducing number of candidates

- Apriori principle:
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori principle

Found to be Infrequent

Illustrating Apriori principle

Item	Count
Bread	Items
Coke	$\mathbf{4}$
Milk	2
Beer	4
Diaper	3
Eggs	4

Minimum Support = 3

Itemset	Count	Pairs (2-itemsets)
\{Bread,Milk	3	
\{Bread,Beer\}	2	(No need to generate
\{Bread,Diaper\}	3	candidates involving Coke
\{Milk, Beer\}	2	or Eggs)
\{Milk,Diaper\} \{Beer,Diaper\}	3	

If every subset is considered,

$$
{ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}=41
$$

Itemset	Count
\{Bread,Milk,Diaper\}	3

With support-based pruning, $6+6+1=13$

Apriori algorithm

- Method:
- Let $\mathrm{k}=1$
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
- Generate length $(\mathrm{k}+1)$ candidate itemsets from length k frequent itemsets
- Prune candidate itemsets containing subsets of length k that are infrequent
- Count the support of each candidate by scanning the DB
- Eliminate candidates that are infrequent, leaving only those that are frequent

Reducing number of comparisons

- Candidate counting:
- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure
- Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Transactions Hash Structure

Buckets

Generate hash tree

Suppose you have 15 candidate itemsets of length 3:
\{1 4 5\}, \{1 2 4\}, \{4 5 7\}, \{1 2 5\}, \{4 5 8\}, \{1 5 9\}, \{1 3 6\}, \{2 3 4\}, \{5 67$\},\{34$ 5\}, \{3 5 6\}, \{3 5 7\}, \{6 8 9\}, \{3 6 7\}, \{3 6 8\}
You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Association rule discovery: hash tree

Hash Function
Candidate Hash Tree
,

Hash on 1, 4 or 7

Association rule discovery: hash tree

Candidate Hash Tree

Association rule discovery: hash tree

Hash Function

Candidate Hash Tree

Hash on 3,6 or 9

Subset operation

Given a transaction t , what are the possible subsets of size 3 ?

Transaction, t

Subset operation using hash tree

Subset operation using hash tree

Subset operation using hash tree

Factors affecting complexity

- Choice of minimum support threshold
- lowering support threshold results in more frequent itemsets
- this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
- since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
- transaction width increases with denser data sets
- This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact representation of frequent itemsets

- Some itemsets are redundant because they have identical support as their supersets

TID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

- Number of frequent itemsets $=3 \times \sum_{k=1}^{10}\binom{10}{k}$
- Need a compact representation

		UPPSALA
Kjell Orsborn	$11 / 29 / 07$	UNIVERSITET

Maximal frequent itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

Closed itemset

- An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, B, C, D\}$
4	$\{A, B, D\}$
5	$\{A, B, C, D\}$

Itemset	Support
$\{A\}$	4
$\{B\}$	5
$\{C\}$	3
$\{D\}$	4
$\{A, B\}$	4
$\{A, C\}$	2
$\{A, D\}$	3
$\{B, C\}$	3
$\{B, D\}$	4
$\{C, D\}$	3

Itemset	Support
$\{A, B, C\}$	2
$\{A, B, D\}$	3
$\{A, C, D\}$	2
$\{B, C, D\}$	3
$\{A, B, C, D\}$	2

Maximal vs closed itemsets

Maximal vs closed frequent itemsets

Maximal vs closed itemsets

Rule Generation

- Given a frequent itemset L , find all non-empty subsets $\mathrm{f} \subset \mathrm{L}$ such that $\mathrm{f} \rightarrow \mathrm{L}-\mathrm{f}$ satisfies the minimum confidence requirement
- If $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ is a frequent itemset, candidate rules:

$$
\begin{array}{llll}
\mathrm{ABC} \rightarrow \mathrm{D}, & \mathrm{ABD} \rightarrow \mathrm{C}, & \mathrm{ACD} \rightarrow \mathrm{~B}, & \mathrm{BCD} \rightarrow \mathrm{~A}, \\
\mathrm{~A} \rightarrow \mathrm{BCD}, & \mathrm{~B} \rightarrow \mathrm{ACD}, & \mathrm{C} \rightarrow \mathrm{ABD}, & \mathrm{D} \rightarrow \mathrm{ABC} \\
\mathrm{AB} \rightarrow \mathrm{CD}, & \mathrm{AC} \rightarrow \mathrm{BD}, & \mathrm{AD} \rightarrow \mathrm{BC}, & \mathrm{BC} \rightarrow \mathrm{AD}, \\
\mathrm{BD} \rightarrow \mathrm{AC}, & \mathrm{CD} \rightarrow \mathrm{AB}, & &
\end{array}
$$

- If $\mathrm{ILI}=\mathrm{k}$, then there are $2^{\mathrm{k}}-2$ candidate association rules (ignoring $\mathrm{L} \rightarrow \varnothing$ and $\varnothing \rightarrow \mathrm{L}$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
- In general, confidence does not have an anti-monotone property $\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D})$ can be larger or smaller than $\mathrm{c}(\mathrm{AB} \rightarrow \mathrm{D})$
- But confidence of rules generated from the same itemset has an antimonotone property
- e.g., $L=\{A, B, C, D\}:$

$$
\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D}) \geq \mathrm{c}(\mathrm{AB} \rightarrow \mathrm{CD}) \geq \mathrm{c}(\mathrm{~A} \rightarrow \mathrm{BCD})
$$

- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule generation for Apriori algorithm

Lattice of rules

Rule generation for Apriori algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join($\mathrm{CD}=>\mathrm{AB}, \mathrm{BD}=>\mathrm{AC})$ would produce the candidate rule $\mathrm{D}=>\mathrm{ABC}$
- Prune rule $\mathrm{D}=>\mathrm{ABC}$ if its
subset $A D=>B C$ does not have high confidence

Rule generation algorithm

- Key fact:

Moving items from the antecedent to the consequent never changes support, and never increases confidence

- Algorithm
- For each itemset I with minsup:
- Find all minconf rules with a single consequent of the form $\left(I-L_{1} \Rightarrow L_{1}\right)$
- Repeat:
- Guess candidate consequents C_{k} by appending items from $I-L_{k-1}$ to L_{k-1}
- Verify confidence of each rule $I-C_{k} \Rightarrow C_{k}$ using known itemset support values

Algorithm to generate association rules

```
Input:
    D //Database of transactions
    I //Items
    L //Large itemsets
    s //Support
    \alpha //Confidence
Output:
    R //Association Rules satisfying s and \alpha
ARGen Algorithm:
    R=\emptyset;
    for each l\inL do
        for each }x\subsetl\mathrm{ such that }x\not=\emptyset\mathrm{ and }x\not=l\mathrm{ do
            if }\frac{\mathrm{ support (l)}}{\mathrm{ support (x)}}\geq\alpha\mathrm{ then
                        R=R\cup{x=>(l-x)};
```


Pattern evaluation

- Association rule algorithms tend to produce too many rules
- many of them are uninteresting or redundant
- Redundant if $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \rightarrow\{\mathrm{D}\}$ and $\{\mathrm{A}, \mathrm{B}\} \rightarrow\{\mathrm{D}\}$ have same support \& confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support \& confidence are the only measures used

Application of Interestingness measure

Computing Interestingness measure

- Given a rule $\mathrm{X} \rightarrow \mathrm{Y}$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $\mathrm{X} \rightarrow \mathrm{Y}$

	Y	\bar{T}	
X	f_{11}	f_{10}	f_{1+}
X	f_{01}	f_{00}	f_{o+}
	f_{+1}	f_{+0}	$\|T\|$

f_{11} : support of X and Y
f_{10} : support of X and Y
f_{01} : support of X and Y
f_{00} : support of X and Y

Used to define various measures

- support, confidence, lift, Gini, J-measure, etc.

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
$\overline{\text { Tea }}$	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence $=P($ Coffee \mid Tea $)=0.75$
but $\mathrm{P}($ Coffee $)=0.9$
\Rightarrow Although confidence is high, rule is misleading
$\Rightarrow \mathrm{P}($ Coffee \mid Tea $)=0.9375$

Statistical independence

- Population of 1000 students
- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 420 students know how to swim and bike (S,B)
$-P(S \wedge B)=420 / 1000=0.42$
$-\mathrm{P}(\mathrm{S}) \times \mathrm{P}(\mathrm{B})=0.6 \times 0.7=0.42$
$-P(S \wedge B)=P(S) \times P(B)=>$ Statistical independence
- $P(S \wedge B)>P(S) \times P(B)=>$ Positively correlated
$-\mathrm{P}(\mathrm{S} \wedge \mathrm{B})<\mathrm{P}(\mathrm{S}) \times \mathrm{P}(\mathrm{B})=>$ Negatively correlated

Statistical-based measures

- Measures that take into account statistical dependence

$$
\begin{aligned}
& \text { Lift }=\frac{P(Y \mid X)}{P(Y)} \\
& \text { Interest }=\frac{P(X, Y)}{P(X) P(Y)} \\
& P S=P(X, Y)-P(X) P(Y) \\
& \phi-\text { coefficient }=\frac{P(X, Y)-P(X) P(Y)}{\sqrt{P(X)[1-P(X)] P(Y)[1-P(Y)]}}
\end{aligned}
$$

Example: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
Teव	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence $=P($ Coffee \mid Tea $)=0.75$
but $\mathrm{P}($ Coffee $)=0.9$
\Rightarrow Lift $=0.75 / 0.9=0.8333(<1$, therefore is negatively associated $)$

Drawback of Lift \& Interest

	Y	$\overline{\mathrm{Y}}$	
X	10	0	10
$\overline{\mathrm{X}}$	0	90	90
	10	90	100

	Y	$\overline{\mathrm{Y}}$	
X	90	0	90
$\overline{\mathrm{X}}$	0	10	10
	90	10	100

$$
\text { Lift }=\frac{0.1}{(0.1)(0.1)}=10
$$

$$
\text { Lift }=\frac{0.9}{(0.9)(0.9)}=1.11
$$

Statistical independence:
If $\mathrm{P}(\mathrm{X}, \mathrm{Y})=\mathrm{P}(\mathrm{X}) \mathrm{P}(\mathrm{Y})=>$ Lift $=1$

There are lots of measures proposed in the literature

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

\#	Measure	Formula
1	ϕ-coefficient	$\frac{P(A, B)-P(A) P(B)}{}$
2	Goodman-Kruskal's (λ)	$\begin{aligned} & \frac{\sqrt{P(A) P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max _{k} P\left(A_{j}, B_{k}\right)+\sum_{k} \max _{j} P\left(A_{j}, B_{k}\right)-\max _{j} P\left(A_{j}\right)-\max _{k} P\left(B_{k}\right)} \\ & 2-\max _{j} P\left(A_{j}\right)-\max _{k} P\left(B_{k}\right) \end{aligned}$
3	Odds ratio (α)	$\frac{P(A, B) P(\bar{A}, \bar{B})}{P(A, \bar{B}) P(\bar{A}, B)}$
4	Yule's Q	$\frac{P(A, B) P(\overline{A B})-P(A, \bar{B}) P(\bar{A}, B)}{P(A, B) P(\overline{A B})+P(A, \bar{B}) P(\bar{A}, B)}=\frac{\alpha-1}{\alpha+1}$
5	Yule's Y	
5	Yue's Y	
6 7	Kappa (κ)	$\frac{P(A, B)+P(\bar{A}, \bar{B})-P(A) P(\bar{B})-P(\bar{A}) P(\bar{B})}{1-P(A) P(B)-P(\bar{A}) P(\bar{B})}$
7	Mutual Information (M)	$\overline{\min \left(-\sum_{i} P\left(A_{i}\right) \log P\left(A_{i}\right),-\sum_{j} P\left(B_{j}\right) \log P\left(B_{j}\right)\right)}$
8	J-Measure (J)	$\begin{array}{r} \max \left(P(A, B) \log \left(\frac{P(B \mid A)}{P(B)}\right)+P(A \bar{B}) \log \left(\frac{P(\bar{B} \mid A)}{P(\bar{B})}\right),\right. \\ \left.P(A, B) \log \left(\frac{P(A \mid B)}{P(A)}\right)+P(\bar{A} B) \log \left(\frac{P(\bar{A} \mid B)}{P(\bar{A})}\right)\right) \end{array}$
9	Gini index (G)	$\begin{aligned} & \max \left(P(A)\left[P(B \mid A)^{\mathrm{a}}+P(\bar{B} \mid A)^{\mathrm{a}}\right]+P(\bar{A})\left[P(B \mid \bar{A})^{\mathrm{a}}+P(\bar{B} \mid \bar{A})^{\mathrm{a}}\right]\right. \\ & \quad-P(B)^{\mathrm{a}}-P(\bar{B})^{\mathrm{a}} \\ & P(B)\left[P(A \mid B)^{\mathrm{a}}+P(\bar{A} \mid B)^{\mathrm{a}}\right]+P(\bar{B})\left[P(A \mid \bar{B})^{\mathrm{a}}+P(\bar{A} \mid \bar{B})^{\mathrm{a}}\right] \\ & \left.\quad-P(A)^{\mathrm{a}}-P(\bar{A})^{\mathrm{a}}\right) \end{aligned}$
10	Support (s)	$P(A, B)$
11	Confidence (c)	$\max (P(B \mid A), P(A \mid B))$
12	Laplace (L)	$\max \left(\frac{N P(A, B)+1}{N P(A)+\mathbf{a}}, \frac{N P(A, B)+1}{N P(B)+\mathbf{3}}\right)$
13	Conviction (V)	$\max \left(\frac{P(A) P(\bar{B})}{P(A \bar{B})}, \frac{P(B) P(\bar{A})}{P(B \bar{A})}\right)$
14	Interest (I)	$\frac{P(A, B)}{P(A) P(B)}$
15	cosine ($I S$)	$\frac{P(A, B)}{\sqrt{P(A) P(B)}}$
16	Piatetsky-Shapiro's (PS)	$P(A, B)-P(A) P(B)$
17	Certainty factor (F)	$\max \left(\frac{P(B \mid A)-P(B)}{1-P(B)}, \frac{P(A \mid B)-P(A)}{1-P(A)}\right)$
18	Added Value ($A V$)	$\max (P(B \mid A)-P(B), P(A \mid B)-P(A))$
19	Collective strength (S)	$\frac{P(A, B)+P(\overline{A B})}{P(A) P(B)+P(\bar{A}) P(\bar{B})} \times \frac{1-P(A) P(B)-P(\bar{A}) P(\bar{B})}{1-P(A, B)-P(\overline{A B})}$
20	Jaccard (ζ)	$\frac{P(A) P(A, B)}{P(A)+P(B)-P(A, B)}$
21	Klosgen (K)	$\sqrt{P(A, B)} \max (P(B \mid A)-P(B), P(A \mid B)-P(A))$

Properties of a good measure

- Piatetsky-Shapiro:

3 properties a good measure M must satisfy:
$-\mathrm{M}(\mathrm{A}, \mathrm{B})=0$ if A and B are statistically independent

- $M(A, B)$ increase monotonically with $P(A, B)$ when $P(A)$ and $P(B)$ remain unchanged
- $\mathrm{M}(\mathrm{A}, \mathrm{B})$ decreases monotonically with $\mathrm{P}(\mathrm{A})$ [or $\mathrm{P}(\mathrm{B})]$ when $\mathrm{P}(\mathrm{A}, \mathrm{B})$ and $\mathrm{P}(\mathrm{B})$ [or $\mathrm{P}(\mathrm{A})$] remain unchanged

Comparing different measures

10 examples of contingency tables:

Rankings of contingency tables using various measures:

Example	$\mathbf{f}_{\mathbf{1 1}}$	$\mathbf{f}_{\mathbf{1 0}}$	$\mathbf{f}_{\mathbf{0 1}}$	$\mathbf{f}_{\mathbf{0 0}}$
E1	8123	83	424	1370
E2	8330	2	622	1046
E3	9481	94	127	298
E4	3954	3080	5	2961
E5	2886	1363	1320	4431
E6	1500	2000	500	6000
E7	4000	2000	1000	3000
E8	4000	2000	2000	2000
E9	1720	7121	5	1154

\#	ϕ	λ	α	Q	Y	κ	M	J	G	s	c	L	V	I	IS	PS	F	AV	S	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7		8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	10	7

Property under variable permutation

	\mathbf{A}	$\overline{\mathbf{A}}$
\mathbf{B}	p	r
$\overline{\mathbf{B}}$		

Does $M(A, B)=M(B, A)$?
Symmetric measures:

- support, lift, collective strength, cosine, Jaccard, etc

Asymmetric measures:

- confidence, conviction, Laplace, J-measure, etc

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Male	Female	
High	2	3	5
Low	1	4	5
	3	7	10

	Male	Female	
High	4	30	34
Low	2	40	42
	6	70	76
	\downarrow	\downarrow	
	$2 x$	$10 x$	

Mosteller:
Underlying association should be independent of the relative number of male and female students in the samples

Property under Inversion operation

	A	B	c	D	E	F	
Transaction $1 \rightarrow$	1	0	0	1	0	0	
.	0	0	1	1		0	
	0	0	1	1	1	0	
-	0	0	1	1	1	0	
-	0	1	1	0	1	1	
	0	0	1	1	,	0	
-	0	0	1	1	1	0	
-	0	0	1	1	1	0	
	0	0	1	1	1	0	
Transaction \rightarrow	1	0	0	1	0	0	
	(a)					(c)	\%
Kalossoson							Ster

Example: ϕ-coefficient

- ϕ-coefficient is analogous to correlation coefficient for continuous variables

	Y	$\overline{\mathrm{Y}}$	
X	60	10	70
$\overline{\mathrm{X}}$	10	20	30
	70	30	100

$$
\begin{aligned}
\phi & =\frac{0.6-0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} & \phi & =\frac{0.2-0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} \\
& =0.5238 & & =0.5238
\end{aligned}
$$

	Y	$\overline{\mathrm{Y}}$	
X	20	10	30
$\overline{\mathrm{X}}$	10	60	70
	30	70	100

ϕ Coefficient is the same for both tables

Property under Null addition

Invariant measures:

- support, cosine, Jaccard, etc

Non-invariant measures:

- correlation, Gini, mutual information, odds ratio, etc

Different measures have different properties

Symbol	Measure	Range	P1	P2	P3	01	02	03	03'	04
Φ	Correlation	-1... $0 \ldots 1$	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Lambda	$0 \ldots 1$	Yes	No	No	Yes	No	No*	Yes	No
α	Odds ratio	$0 \ldots 1 \ldots \infty$	Yes*	Yes	Yes	Yes	Yes	Yes*	Yes	No
Q	Yule's Q	$-1 \ldots 0 \ldots 1$	Yes	No						
Y	Yule's Y	-1... $0 \ldots 1$	Yes	No						
κ	Cohen's	-1... $0 \ldots 1$	Yes	Yes	Yes	Yes	No	No	Yes	No
M	Mutual Information	$0 \ldots 1$	Yes	Yes	Yes	Yes	No	No*	Yes	No
J	J-Measure	$0 \ldots 1$	Yes	No						
G	Gini Index	$(\sqrt{2})\binom{0 \ldots 1}{\sqrt{3}} \quad 2$	Yes	No	No	No	No	No*	Yes	No
S	Support	$\left(\sqrt{\sqrt{3}}^{-1}\right)\left(2{ }^{2} \overline{0}^{\sqrt{3}-\overline{1 / \sqrt{3}}}\right) \quad 0 \quad \frac{2}{3-\sqrt{3}}$	No	Yes	No	Yes	No	No	No	No
C	Confidence	$0 \ldots 1$	No	Yes	No	Yes	No	No	No	Yes
L	Laplace	$0 \ldots 1$	No	Yes	No	Yes	No	No	No	No
V	Conviction	$0.5 \ldots 1 \ldots \infty$	No	Yes	No	Yes**	No	No	Yes	No
I	Interest	$0 \ldots 1 \ldots \infty$	Yes*	Yes	Yes	Yes	No	No	No	No
IS	IS (cosine)	$0 . .1$	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	$-0.25 \ldots 0 \ldots 0.25$	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	$-1 \ldots 0 \ldots 1$	Yes	Yes	Yes	No	No	No	Yes	No
AV	Added value	$0.5 \ldots 1 \ldots 1$	Yes	Yes	Yes	No	No	No	No	No
S	Collective strength	$0 \ldots 1 \ldots \infty$	No	Yes	Yes	Yes	No	Yes*	Yes	No
ζ	Jaccard	0 .. 1	No	Yes	Yes	Yes	No	No	No	Yes
.										

Subjective Interestingness Measure

- Objective measure:
- Rank patterns based on statistics computed from data
- e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure:
- Rank patterns according to user's interpretation
- A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz \& Tuzhilin)
- A pattern is subjectively interesting if it is actionable (Silberschatz \& Tuzhilin)

